We study various regularity properties of minimizers of the Φ-perimeter, where Φ is a norm. Under suitable assumptions on Φ and on the dimension of the ambient space, we prove that the boundary of a cartesian minimizer is locally a Lipschitz graph out of a closed singular set of small Hausdorff dimension. Moreover, we show the following anisotropic Bernsteintype result: any entire cartesian minimizer is the subgraph of a monotone function depending only on one variable.
Bellettini, G., Kholmatov, S.Y., Novaga, M. (2017). Minimizers of anisotropic perimeters with cylindrical norms. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 16(4), 1427-1454 [10.3934/cpaa.2017068].
Minimizers of anisotropic perimeters with cylindrical norms
BELLETTINI, GIOVANNI;
2017-01-01
Abstract
We study various regularity properties of minimizers of the Φ-perimeter, where Φ is a norm. Under suitable assumptions on Φ and on the dimension of the ambient space, we prove that the boundary of a cartesian minimizer is locally a Lipschitz graph out of a closed singular set of small Hausdorff dimension. Moreover, we show the following anisotropic Bernsteintype result: any entire cartesian minimizer is the subgraph of a monotone function depending only on one variable.File | Dimensione | Formato | |
---|---|---|---|
2017_Bellettini_Novaga_Kholmatov_CPAA.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
948.8 kB
Formato
Adobe PDF
|
948.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1017406