We derive an explicit formula for the computation of a Vassiliev-type invariant of an apparent contour introduced recently by Ohmoto and Aicardi using appropriate linking numbers of its Legendrian lift. Our formula does not require the construction of the Legendrian lift and only takes into account the nodes, the cusps, the extremal points and the orientation of the apparent contour. In this way the computation can be implemented into a computer program; we demonstrate its use with some examples.

Bellettini, G., Beorchia, V., Paolini, M. (2009). An explicit formula for a Bennequin-type invariant for apparent contours. TOPOLOGY AND ITS APPLICATIONS, 156(4), 747-760 [10.1016/j.topol.2008.09.011].

An explicit formula for a Bennequin-type invariant for apparent contours

BELLETTINI, GIOVANNI;
2009-01-01

Abstract

We derive an explicit formula for the computation of a Vassiliev-type invariant of an apparent contour introduced recently by Ohmoto and Aicardi using appropriate linking numbers of its Legendrian lift. Our formula does not require the construction of the Legendrian lift and only takes into account the nodes, the cusps, the extremal points and the orientation of the apparent contour. In this way the computation can be implemented into a computer program; we demonstrate its use with some examples.
2009
Bellettini, G., Beorchia, V., Paolini, M. (2009). An explicit formula for a Bennequin-type invariant for apparent contours. TOPOLOGY AND ITS APPLICATIONS, 156(4), 747-760 [10.1016/j.topol.2008.09.011].
File in questo prodotto:
File Dimensione Formato  
2009_Bellettini_Beorchia_Paolini_Topol_Appl.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 455.86 kB
Formato Adobe PDF
455.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1017393