We consider nonlinear eigenvalue problems of the form (*) Tx + epsilon B(x) = lambda x, where T is a self-adjoint bounded linear operator acting in a real Hilbert space H, and B : H H is a (possibly) nonlinear continuous perturbation term. Assuming that lambda(0) is an isolated eigenvalue of finite multiplicity of T, we ask if for epsilon not equal 0 and small there are "eigenvalues" of (*) near lambda(0), that is, numbers lambda(epsilon) for which (*) is satisfied by some normalized "eigenvector" x of T delta B. In this paper we recall some recent results giving an affirmative answer to this question, and for these cases we prove assuming in addition Lipschitz continuity on B upper and lower bounds for the perturbed eigenvalues lambda(epsilon) which are determined by those for the nonlinear Rayleigh quotient < B(nu), nu >)/<nu, nu > with nu in the eigenspace Ker(T - lambda I-0). This yields in particular information on the rate of convergence of lambda(epsilon) to lambda(0) as E -> 0. Applications are given in the sequence space l(2), and in the Sobolev space H-0(1) to deal with some nonlinearly perturbed ordinary or partial differential equations.
Chiappinelli, R. (2017). Approximation and convergence rate of nonlinear eigenvalues: Lipschitz perturbations of a bounded self-adjoint operator. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 455(2), 1720-1732 [10.1016/j.jmaa.2017.06.070].
Approximation and convergence rate of nonlinear eigenvalues: Lipschitz perturbations of a bounded self-adjoint operator
CHIAPPINELLI, RAFFAELE
2017-01-01
Abstract
We consider nonlinear eigenvalue problems of the form (*) Tx + epsilon B(x) = lambda x, where T is a self-adjoint bounded linear operator acting in a real Hilbert space H, and B : H H is a (possibly) nonlinear continuous perturbation term. Assuming that lambda(0) is an isolated eigenvalue of finite multiplicity of T, we ask if for epsilon not equal 0 and small there are "eigenvalues" of (*) near lambda(0), that is, numbers lambda(epsilon) for which (*) is satisfied by some normalized "eigenvector" x of T delta B. In this paper we recall some recent results giving an affirmative answer to this question, and for these cases we prove assuming in addition Lipschitz continuity on B upper and lower bounds for the perturbed eigenvalues lambda(epsilon) which are determined by those for the nonlinear Rayleigh quotient < B(nu), nu >)/File | Dimensione | Formato | |
---|---|---|---|
Approximation and convergence rate 2017.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
371.88 kB
Formato
Adobe PDF
|
371.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1010015