Various arrays of microtubules are present throughout the plant cell cycle and are involved in distinct functions. Microtubule-associated proteins (MAPs) regulate microtubule dynamics by acting as stabilizers, destabilizers, and promoters of microtubule dynamics. The MAP65 family is a specific group of cross-linkers required for structural maintenance of microtubules. In plants, different isoforms of MAP65 are differentially expressed according to their developmental program. In this work, we analyzed the differential distribution of proteins immunologically related to MAP65-1 during bud development in grapevine (Vitis vinifera L.). First, we annotated the MAP65 genes present in the Vitis genome in order to compare the number and sequence of genes to other species. Subsequently, we focused on a specific isoform (MAP65-1) by characterizing its accumulation and distribution. Proteins were extracted from different organs of Vitis (buds, leaves, flowers, and tendrils), were separated by two-dimensional electrophoresis (2-DE), and were probed by immunoblot with a specific antiserum. We found seven spots immunologically related to MAP65-1, grouped in two distinct clusters, which accumulate differentially according to the developmental stage. In addition, we analyzed the localization of MAP65-1 during three different stages of bud development. Implication of data on the use of different isotypes of MAP65-1 during Vitis development is discussed.

Parrotta, L., Faleri, C., Cresti, M., Cai, G. (2017). Proteins immunologically related to MAP65-1 accumulate and localize differentially during bud development in Vitis vinifera L. PROTOPLASMA, 254(4), 1591-1605 [10.1007/s00709-016-1055-y].

Proteins immunologically related to MAP65-1 accumulate and localize differentially during bud development in Vitis vinifera L

PARROTTA, LUIGI;FALERI, CLAUDIA;CRESTI, MAURO;CAI, GIAMPIERO
2017-01-01

Abstract

Various arrays of microtubules are present throughout the plant cell cycle and are involved in distinct functions. Microtubule-associated proteins (MAPs) regulate microtubule dynamics by acting as stabilizers, destabilizers, and promoters of microtubule dynamics. The MAP65 family is a specific group of cross-linkers required for structural maintenance of microtubules. In plants, different isoforms of MAP65 are differentially expressed according to their developmental program. In this work, we analyzed the differential distribution of proteins immunologically related to MAP65-1 during bud development in grapevine (Vitis vinifera L.). First, we annotated the MAP65 genes present in the Vitis genome in order to compare the number and sequence of genes to other species. Subsequently, we focused on a specific isoform (MAP65-1) by characterizing its accumulation and distribution. Proteins were extracted from different organs of Vitis (buds, leaves, flowers, and tendrils), were separated by two-dimensional electrophoresis (2-DE), and were probed by immunoblot with a specific antiserum. We found seven spots immunologically related to MAP65-1, grouped in two distinct clusters, which accumulate differentially according to the developmental stage. In addition, we analyzed the localization of MAP65-1 during three different stages of bud development. Implication of data on the use of different isotypes of MAP65-1 during Vitis development is discussed.
2017
Parrotta, L., Faleri, C., Cresti, M., Cai, G. (2017). Proteins immunologically related to MAP65-1 accumulate and localize differentially during bud development in Vitis vinifera L. PROTOPLASMA, 254(4), 1591-1605 [10.1007/s00709-016-1055-y].
File in questo prodotto:
File Dimensione Formato  
Proteins immunologically Vitis vinifera.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1008191