In this paper, the authors investigate the statistical matching of the panchromatic (Pan) image to the multispectral (MS) bands, also known as the histogram matching, for the two main classes of pansharpening methods, i.e., those based on component substitution (CS) or spectral methods and those based on multiresolution analysis (MRA) or spatial methods. Also, hybrid methods combining CS with MRA, like the wide-spread additive wavelet luminance proportional (AWLP), are investigated. It is shown that all spectral, spatial, and hybrid methods must perform a dynamics matching of the enhancing Pan to the individual MS bands for MRA or a combination of them (the component that shall be substituted) for CS. For hybrid methods, the problem is more complex and both types of histogram matching may be suitable. Such an intersensor balance may be either explicit or implicitly performed by the detail-injection model, e.g., the popular projective and multiplicative injection models. An experimental setup exploiting IKONOS and WorldView-2 data sets demonstrates that a correct histogram matching is the key to attain extra performance from established methods. As a first result of this paper, the AWLP method has been revisited and its performance significantly improved by simply performing the histogram matching of Pan to the individual MS bands, rather than to the intensity component, thereby losing the original proportionality feature.

Alparone, L., Garzelli, A., Vivone, G. (2017). Intersensor statistical matching for pansharpening: theoretical issues and practical solutions. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 55(8), 4682-4695 [10.1109/TGRS.2017.2697943].

Intersensor statistical matching for pansharpening: theoretical issues and practical solutions

Garzelli, Andrea
;
2017-01-01

Abstract

In this paper, the authors investigate the statistical matching of the panchromatic (Pan) image to the multispectral (MS) bands, also known as the histogram matching, for the two main classes of pansharpening methods, i.e., those based on component substitution (CS) or spectral methods and those based on multiresolution analysis (MRA) or spatial methods. Also, hybrid methods combining CS with MRA, like the wide-spread additive wavelet luminance proportional (AWLP), are investigated. It is shown that all spectral, spatial, and hybrid methods must perform a dynamics matching of the enhancing Pan to the individual MS bands for MRA or a combination of them (the component that shall be substituted) for CS. For hybrid methods, the problem is more complex and both types of histogram matching may be suitable. Such an intersensor balance may be either explicit or implicitly performed by the detail-injection model, e.g., the popular projective and multiplicative injection models. An experimental setup exploiting IKONOS and WorldView-2 data sets demonstrates that a correct histogram matching is the key to attain extra performance from established methods. As a first result of this paper, the AWLP method has been revisited and its performance significantly improved by simply performing the histogram matching of Pan to the individual MS bands, rather than to the intensity component, thereby losing the original proportionality feature.
2017
Alparone, L., Garzelli, A., Vivone, G. (2017). Intersensor statistical matching for pansharpening: theoretical issues and practical solutions. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 55(8), 4682-4695 [10.1109/TGRS.2017.2697943].
File in questo prodotto:
File Dimensione Formato  
2017_TGARS_PS_HM.pdf

non disponibili

Descrizione: 2017_TGARS_PS_HM
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1007258