In this paper we introduce symplectic Grassmann codes, in analogy to ordinary Grassmann codes and orthogonal Grassmann codes, as projective codes defined by symplectic Grassmannians. Lagrangian-Grassmannian codes are a special class of symplectic Grassmann codes. We describe all the parameters of line symplectic Grassmann codes and we provide the full weight enumerator for the Lagrangian-Grassmannian codes of rank 2 and 3.
Cardinali, I., Giuzzi, L. (2016). Minimum distance of symplectic Grassmann codes. LINEAR ALGEBRA AND ITS APPLICATIONS, 488, 124-134 [10.1016/j.laa.2015.09.031].
Minimum distance of symplectic Grassmann codes
Cardinali, Ilaria;
2016-01-01
Abstract
In this paper we introduce symplectic Grassmann codes, in analogy to ordinary Grassmann codes and orthogonal Grassmann codes, as projective codes defined by symplectic Grassmannians. Lagrangian-Grassmannian codes are a special class of symplectic Grassmann codes. We describe all the parameters of line symplectic Grassmann codes and we provide the full weight enumerator for the Lagrangian-Grassmannian codes of rank 2 and 3.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Cardinali minimum.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
308.2 kB
Formato
Adobe PDF
|
308.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1503.05456.pdf
accesso aperto
Descrizione: https://doi.org/10.1016/j.laa.2015.09.031
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
144.67 kB
Formato
Adobe PDF
|
144.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1006624