In this paper we introduce symplectic Grassmann codes, in analogy to ordinary Grassmann codes and orthogonal Grassmann codes, as projective codes defined by symplectic Grassmannians. Lagrangian-Grassmannian codes are a special class of symplectic Grassmann codes. We describe all the parameters of line symplectic Grassmann codes and we provide the full weight enumerator for the Lagrangian-Grassmannian codes of rank 2 and 3.

Cardinali, I., & Giuzzi, L. (2016). Minimum distance of symplectic Grassmann codes. LINEAR ALGEBRA AND ITS APPLICATIONS, 488, 124-134 [10.1016/j.laa.2015.09.031].

Minimum distance of symplectic Grassmann codes

Cardinali, Ilaria;
2016

Abstract

In this paper we introduce symplectic Grassmann codes, in analogy to ordinary Grassmann codes and orthogonal Grassmann codes, as projective codes defined by symplectic Grassmannians. Lagrangian-Grassmannian codes are a special class of symplectic Grassmann codes. We describe all the parameters of line symplectic Grassmann codes and we provide the full weight enumerator for the Lagrangian-Grassmannian codes of rank 2 and 3.
Cardinali, I., & Giuzzi, L. (2016). Minimum distance of symplectic Grassmann codes. LINEAR ALGEBRA AND ITS APPLICATIONS, 488, 124-134 [10.1016/j.laa.2015.09.031].
File in questo prodotto:
File Dimensione Formato  
Cardinali minimum.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 308.2 kB
Formato Adobe PDF
308.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1503.05456.pdf

accesso aperto

Descrizione: https://doi.org/10.1016/j.laa.2015.09.031
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 144.67 kB
Formato Adobe PDF
144.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/1006624