In this paper, we evaluate the impact of mineral dust (MD) on snow radiative properties in the European Alps at ground, aerial, and satellite scale. A field survey was conducted to acquire snow spectral reflectance measurements with an Analytical Spectral Device (ASD) Field Spec Pro spectroradiometer. Surface snow samples were analyzed to determine the concentration and size distribution of MD in each sample. An overflight of a four-rotor Unmanned Aerial Vehicle (UAV) equipped with an RGB digital camera sensor was carried out during the field operations. Finally, Landsat 8 Operational Land Imager (OLI) data covering the central European Alps were analyzed. Observed reflectance evidenced that MD strongly reduced the spectral reflectance of snow, in particular, from 350 to 600 nm. Reflectance was compared with that simulated by parameterizing the Snow, Ice, and Aerosol Radiation radiative transfer model. We defined a novel spectral index, the Snow Darkening Index (SDI), that combines different wavelengths showing nonlinear correlation with measured MD concentrations (R2= 0.87, root-mean-square error = 0.037). We also estimated a positive instantaneous radiative forcing that reaches values up to 153W/m2for the most concentrated sampling area. SDI maps at local scale were produced using the UAV data, while regional SDI maps were generated with OLI data. These maps show the spatial distribution of MD in snow after a natural deposition from the Saharan desert. Such postdepositional experimental data are fundamental for validating radiative transfer models and global climate models that simulate the impact of MD on snow radiative properties.

Di Mauro, B., Fava, F., Ferrero, L., Garzonio, R., Baccolo, G., Delmonte, B., et al. (2015). Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES, 120(12), 6080-6097 [10.1002/2015JD023287].

Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations

BACCOLO, GIOVANNI;Delmonte, Barbara;
2015-01-01

Abstract

In this paper, we evaluate the impact of mineral dust (MD) on snow radiative properties in the European Alps at ground, aerial, and satellite scale. A field survey was conducted to acquire snow spectral reflectance measurements with an Analytical Spectral Device (ASD) Field Spec Pro spectroradiometer. Surface snow samples were analyzed to determine the concentration and size distribution of MD in each sample. An overflight of a four-rotor Unmanned Aerial Vehicle (UAV) equipped with an RGB digital camera sensor was carried out during the field operations. Finally, Landsat 8 Operational Land Imager (OLI) data covering the central European Alps were analyzed. Observed reflectance evidenced that MD strongly reduced the spectral reflectance of snow, in particular, from 350 to 600 nm. Reflectance was compared with that simulated by parameterizing the Snow, Ice, and Aerosol Radiation radiative transfer model. We defined a novel spectral index, the Snow Darkening Index (SDI), that combines different wavelengths showing nonlinear correlation with measured MD concentrations (R2= 0.87, root-mean-square error = 0.037). We also estimated a positive instantaneous radiative forcing that reaches values up to 153W/m2for the most concentrated sampling area. SDI maps at local scale were produced using the UAV data, while regional SDI maps were generated with OLI data. These maps show the spatial distribution of MD in snow after a natural deposition from the Saharan desert. Such postdepositional experimental data are fundamental for validating radiative transfer models and global climate models that simulate the impact of MD on snow radiative properties.
2015
Di Mauro, B., Fava, F., Ferrero, L., Garzonio, R., Baccolo, G., Delmonte, B., et al. (2015). Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES, 120(12), 6080-6097 [10.1002/2015JD023287].
File in questo prodotto:
File Dimensione Formato  
agubaccolo.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 8.61 MB
Formato Adobe PDF
8.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1006211