Background: Perinatal hypoxic-ischemic brain damage is a major cause of acute mortality and chronic neurological morbidity in infants and children. Oxidative stress due to free radical formation and the initiation of abnormal oxidative reactions appears to play a key role. Docosahexanoic acid (DHA), a main component of brain membrane phospholipids, may act as a neuroprotectant after hypoxia-ischemia by regulating multiple molecular pathways and gene expression. Objectives: The aims of this study were to test the hypothesis that DHA provides significant protection against lipoperoxidation damage in the cerebral cortex and hippocampus in a neonatal piglet model of severe hypoxia-reoxygenation. Methods: Newborn piglets, Noroc (LYLD), were subjected to severe global hypoxia. One group was resuscitated with ambient air (21% group, n = 11) and another also received 5 mg/kg of DHA 4 h after the end of hypoxia (21% DHA group, n = 10). After 9.5 h, tissues from the prefrontal cortex and hippocampus were sampled and the levels of isoprostanes, neuroprostanes, neurofurans, and F2-dihomo-isoprostanes were determined by the liquid chromatography triple quadrupole mass spectrometry technique. Results: Lipid peroxidation biomarkers were significantly lower in both the cortex and hippocampus in the DHA-treated group compared with the untreated group. Conclusions: The present study demonstrates that DHA administration after severe hypoxia in newborn piglets has an antioxidative effect in the brain, suggesting a protective potential of DHA if given after injuries to the brain.

Solberg, R., Longini, M., Proietti, F., Perrone, S., Felici, C., Porta, A., et al. (2017). DHA Reduces Oxidative Stress after Perinatal Asphyxia: A Study in Newborn Piglets. NEONATOLOGY, 112(1), 1-8 [10.1159/000454982].

DHA Reduces Oxidative Stress after Perinatal Asphyxia: A Study in Newborn Piglets

Longini, Mariangela;Proietti, Fabrizio;Felici, Cosetta;Buonocore, Giuseppe
2017-01-01

Abstract

Background: Perinatal hypoxic-ischemic brain damage is a major cause of acute mortality and chronic neurological morbidity in infants and children. Oxidative stress due to free radical formation and the initiation of abnormal oxidative reactions appears to play a key role. Docosahexanoic acid (DHA), a main component of brain membrane phospholipids, may act as a neuroprotectant after hypoxia-ischemia by regulating multiple molecular pathways and gene expression. Objectives: The aims of this study were to test the hypothesis that DHA provides significant protection against lipoperoxidation damage in the cerebral cortex and hippocampus in a neonatal piglet model of severe hypoxia-reoxygenation. Methods: Newborn piglets, Noroc (LYLD), were subjected to severe global hypoxia. One group was resuscitated with ambient air (21% group, n = 11) and another also received 5 mg/kg of DHA 4 h after the end of hypoxia (21% DHA group, n = 10). After 9.5 h, tissues from the prefrontal cortex and hippocampus were sampled and the levels of isoprostanes, neuroprostanes, neurofurans, and F2-dihomo-isoprostanes were determined by the liquid chromatography triple quadrupole mass spectrometry technique. Results: Lipid peroxidation biomarkers were significantly lower in both the cortex and hippocampus in the DHA-treated group compared with the untreated group. Conclusions: The present study demonstrates that DHA administration after severe hypoxia in newborn piglets has an antioxidative effect in the brain, suggesting a protective potential of DHA if given after injuries to the brain.
2017
Solberg, R., Longini, M., Proietti, F., Perrone, S., Felici, C., Porta, A., et al. (2017). DHA Reduces Oxidative Stress after Perinatal Asphyxia: A Study in Newborn Piglets. NEONATOLOGY, 112(1), 1-8 [10.1159/000454982].
File in questo prodotto:
File Dimensione Formato  
solberg2017-1.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 523.26 kB
Formato Adobe PDF
523.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1005976