Krabbe's disease (KD) is a degenerative lysosomal storage disease resulting from deficiency of β-galactocerebrosidase activity. Over 100 mutations are known to cause the disease, and these usually occur in compound heterozygote patterns. In affected patients, nonsense mutations leading to a nonfunctional enzyme are often found associated with other mutations. The twitcher mouse is a naturally occurring model of KD, containing in β-galactocerebrosidase a premature stop codon, W339X. Recent studies have shown that selected compounds may induce the ribosomal bypass of premature stop codons without affecting the normal termination codons. The rescue of β-galactocerebrosidase activity induced by treatment with premature termination codon (PTC) 124, a well-characterized compound known to induce ribosomal read-through, was investigated on oligodendrocytes prepared from twitcher mice and on human fibroblasts from patients bearing nonsense mutations. The effectiveness of the nonsense-mediated mRNA decay (NMD) inhibitor 1 (NMDI1), a newly identified inhibitor of NMD, was also tested. Incubation of these cell lines with PTC124 and NMDI1 increased the levels of mRNA and rescued galactocerebrosidase enzymatic activity in a dose-dependent manner. The low but sustained expression of β-galactocerebrosidase in oligodendrocytes was sufficient to improve the morphology of the differentiated cells. Our in vitro approach provides the basis for further investigation of ribosomal read-through as an alternative therapeutic strategy to ameliorate the quality of life in selected KD patients. © 2016 Wiley Periodicals, Inc.

Luddi, A., Crifasi, L., Capaldo, A., Piomboni, P., Costantino Ceccarini, E. (2016). Suppression of galactocerebrosidase premature termination codon and rescue of galactocerebrosidase activity in twitcher cells. JOURNAL OF NEUROSCIENCE RESEARCH, 94(11), 1273-1283 [10.1002/jnr.23790].

Suppression of galactocerebrosidase premature termination codon and rescue of galactocerebrosidase activity in twitcher cells

Luddi, Alice;Crifasi, Laura;Capaldo, Angela;Piomboni, Paola;
2016-01-01

Abstract

Krabbe's disease (KD) is a degenerative lysosomal storage disease resulting from deficiency of β-galactocerebrosidase activity. Over 100 mutations are known to cause the disease, and these usually occur in compound heterozygote patterns. In affected patients, nonsense mutations leading to a nonfunctional enzyme are often found associated with other mutations. The twitcher mouse is a naturally occurring model of KD, containing in β-galactocerebrosidase a premature stop codon, W339X. Recent studies have shown that selected compounds may induce the ribosomal bypass of premature stop codons without affecting the normal termination codons. The rescue of β-galactocerebrosidase activity induced by treatment with premature termination codon (PTC) 124, a well-characterized compound known to induce ribosomal read-through, was investigated on oligodendrocytes prepared from twitcher mice and on human fibroblasts from patients bearing nonsense mutations. The effectiveness of the nonsense-mediated mRNA decay (NMD) inhibitor 1 (NMDI1), a newly identified inhibitor of NMD, was also tested. Incubation of these cell lines with PTC124 and NMDI1 increased the levels of mRNA and rescued galactocerebrosidase enzymatic activity in a dose-dependent manner. The low but sustained expression of β-galactocerebrosidase in oligodendrocytes was sufficient to improve the morphology of the differentiated cells. Our in vitro approach provides the basis for further investigation of ribosomal read-through as an alternative therapeutic strategy to ameliorate the quality of life in selected KD patients. © 2016 Wiley Periodicals, Inc.
2016
Luddi, A., Crifasi, L., Capaldo, A., Piomboni, P., Costantino Ceccarini, E. (2016). Suppression of galactocerebrosidase premature termination codon and rescue of galactocerebrosidase activity in twitcher cells. JOURNAL OF NEUROSCIENCE RESEARCH, 94(11), 1273-1283 [10.1002/jnr.23790].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1005952
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo