We provide Monte Carlo evidence on the finite-sample behavior of the conditional empirical likelihood (CEL) estimator of Kitamura, Tripathi, and Ahn and the conditional Euclidean empirical likelihood (CEEL) estimator of Antoine, Bonnal, and Renault in the context of a heteroscedastic linear model with an endogenous regressor. We compare these estimators with three heteroscedasticity-consistent instrument-based estimators and the Donald, Imbens, and Newey estimator in terms of various performance measures. Our results suggest that the CEL and CEEL with fixed bandwidths may suffer from the no-moment problem, similarly to the unconditional generalized empirical likelihood estimators studied by Guggenberger. We also study the CEL and CEEL estimators with automatic bandwidths selected through cross-validation. We do not find evidence that these suffer from the no-moment problem. When the instruments are weak, we find CEL and CEEL to have finite-sample properties—in terms of mean squared error and coverage probability of confidence intervals—poorer than the heteroscedasticity-consistent Fuller (HFUL) estimator. In the strong instruments case, the CEL and CEEL estimators with automatic bandwidths tend to outperform HFUL in terms of mean squared error, while the reverse holds in terms of the coverage probability, although the differences in numerical performance are rather small.
Crudu, F., Sandor, Z. (2017). On the Finite Sample Properties of Conditional Empirical Likelihood Estimators. COMMUNICATIONS IN STATISTICS. SIMULATION AND COMPUTATION, 46(2), 1520-1545 [10.1080/03610918.2014.999090].
On the Finite Sample Properties of Conditional Empirical Likelihood Estimators
Crudu, Federico;Zsolt, Sándor
2017-01-01
Abstract
We provide Monte Carlo evidence on the finite-sample behavior of the conditional empirical likelihood (CEL) estimator of Kitamura, Tripathi, and Ahn and the conditional Euclidean empirical likelihood (CEEL) estimator of Antoine, Bonnal, and Renault in the context of a heteroscedastic linear model with an endogenous regressor. We compare these estimators with three heteroscedasticity-consistent instrument-based estimators and the Donald, Imbens, and Newey estimator in terms of various performance measures. Our results suggest that the CEL and CEEL with fixed bandwidths may suffer from the no-moment problem, similarly to the unconditional generalized empirical likelihood estimators studied by Guggenberger. We also study the CEL and CEEL estimators with automatic bandwidths selected through cross-validation. We do not find evidence that these suffer from the no-moment problem. When the instruments are weak, we find CEL and CEEL to have finite-sample properties—in terms of mean squared error and coverage probability of confidence intervals—poorer than the heteroscedasticity-consistent Fuller (HFUL) estimator. In the strong instruments case, the CEL and CEEL estimators with automatic bandwidths tend to outperform HFUL in terms of mean squared error, while the reverse holds in terms of the coverage probability, although the differences in numerical performance are rather small.File | Dimensione | Formato | |
---|---|---|---|
CruduSandor2015_CommStat.pdf
accesso aperto
Tipologia:
Post-print
Licenza:
Creative commons
Dimensione
480.73 kB
Formato
Adobe PDF
|
480.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1004661