We study an optimal stopping problem for a stochastic differential equation with delay driven by a Lévy noise. Approaching the problem by its infinite-dimensional representation, we derive conditions yielding an explicit solution to the problem. Applications to the American put option problem are shown. © 2010 Springer Science+Business Media B.V.

Federico, S., Øksendal, B. (2011). Optimal Stopping of Stochastic Differential Equations with Delay Driven by Lévy Noise. POTENTIAL ANALYSIS, 34(2), 181-198 [10.1007/s11118-010-9187-8].

Optimal Stopping of Stochastic Differential Equations with Delay Driven by Lévy Noise

FEDERICO, SALVATORE;
2011-01-01

Abstract

We study an optimal stopping problem for a stochastic differential equation with delay driven by a Lévy noise. Approaching the problem by its infinite-dimensional representation, we derive conditions yielding an explicit solution to the problem. Applications to the American put option problem are shown. © 2010 Springer Science+Business Media B.V.
2011
Federico, S., Øksendal, B. (2011). Optimal Stopping of Stochastic Differential Equations with Delay Driven by Lévy Noise. POTENTIAL ANALYSIS, 34(2), 181-198 [10.1007/s11118-010-9187-8].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1003431
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo