The first (and only) dedicated life detection experiments on another planet were performed by the Viking Landers of 1976. In the Viking Labeled Release (LR) experiment of Levin and Straat, injections of organic compounds into Martian soil samples caused radioactive gas to evolve approaching plateaus of 10,000 – 15,000 cpm over several sols (Martian days). These “actives” were run at lander sites 1 and 2 with similar results. In contrast, the LR response to the 160o C control sample soils was very low. In conjunction with the active experiment results this negative result from the controls satisfied the pre-mission criteria for life. However, a controversy immediately arose concerning a biologic interpretation of the data. In an attempt to resolve this issue in the current work, we have employed complexity analysis of the Viking LR data for the initial six sols, and of terrestrial LR pilot studies using bacteria-laden, active soil (Biol 5) and sterilized soil (Biol 6). . Measures of mathematical complexity permitted a deep analysis of signal structure. Martian LR active response data were strongly superimposable upon the terrestrial biological time series, forming a welldefined cluster; and the heat-treated control samples, terrestrial and Martian, also clustered together, but distant from the active group, suggesting that the LR had, indeed, detected biological activity on Mars. The results presente herein are a key subset of the details published earlier by the same authors (IJASS, 13 (1), 14-26, 2012).
Bianciardi, G., J. D., M., P. A., S., G. V., L. (2012). When the Viking Missions Discovered Life on the Red Planet. In EPSC2012-Vol.7 (pp.501-502).
When the Viking Missions Discovered Life on the Red Planet
BIANCIARDI, GIORGIO;
2012-01-01
Abstract
The first (and only) dedicated life detection experiments on another planet were performed by the Viking Landers of 1976. In the Viking Labeled Release (LR) experiment of Levin and Straat, injections of organic compounds into Martian soil samples caused radioactive gas to evolve approaching plateaus of 10,000 – 15,000 cpm over several sols (Martian days). These “actives” were run at lander sites 1 and 2 with similar results. In contrast, the LR response to the 160o C control sample soils was very low. In conjunction with the active experiment results this negative result from the controls satisfied the pre-mission criteria for life. However, a controversy immediately arose concerning a biologic interpretation of the data. In an attempt to resolve this issue in the current work, we have employed complexity analysis of the Viking LR data for the initial six sols, and of terrestrial LR pilot studies using bacteria-laden, active soil (Biol 5) and sterilized soil (Biol 6). . Measures of mathematical complexity permitted a deep analysis of signal structure. Martian LR active response data were strongly superimposable upon the terrestrial biological time series, forming a welldefined cluster; and the heat-treated control samples, terrestrial and Martian, also clustered together, but distant from the active group, suggesting that the LR had, indeed, detected biological activity on Mars. The results presente herein are a key subset of the details published earlier by the same authors (IJASS, 13 (1), 14-26, 2012).File | Dimensione | Formato | |
---|---|---|---|
EPSC2012-501-1 PUBBLICATO.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
98.53 kB
Formato
Adobe PDF
|
98.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/44019
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo