Metal cluster chemistry is at the cutting edge between molecular and solid-state chemistry and has therefore had a great impact on the researchers working on organic, coordination, and solid-state chemistry, catalysis, physics, and materials science. The development of new sophisticated synthetic techniques has led to enormous progress in the synthesis of this diverse class of compounds. The number of clusters is growing rapidly, since the possible variations in the metal and ligand sphere are numerous. Modern bonding theories, such as the isolobal principle, have allowed a better understanding of the structures and properties of metal clusters, and thus paved the way for the usage of these versatile materials. Catalysis and nanomaterials are just two of the very promising application-oriented fields. Seventy six contributions, written by world experts in this research field, provide extensive coverage of different aspects of cluster chemistry, ranging from synthesis, structure determination, and dynamics to applications. Up-to-date information, including an impressive collection of structural data and illustrations, extensive coverage of the most important publications of the last decade, and many more features make this three-volume set a complete single-source guide for all researchers working in the area of cluster chemistry.

Zanello, P., Fabrizi De Biani, F. (1999). Bimetallic effects on the redox activity of transition-metal carbonyl clusters. In Metal Clusters in Chemistry (pp. 1104-1136). WEINHEIM : Wiley-VCH [10.1002/9783527618316.ch3h].

Bimetallic effects on the redox activity of transition-metal carbonyl clusters

Zanello P.;Fabrizi de Biani F.
1999-01-01

Abstract

Metal cluster chemistry is at the cutting edge between molecular and solid-state chemistry and has therefore had a great impact on the researchers working on organic, coordination, and solid-state chemistry, catalysis, physics, and materials science. The development of new sophisticated synthetic techniques has led to enormous progress in the synthesis of this diverse class of compounds. The number of clusters is growing rapidly, since the possible variations in the metal and ligand sphere are numerous. Modern bonding theories, such as the isolobal principle, have allowed a better understanding of the structures and properties of metal clusters, and thus paved the way for the usage of these versatile materials. Catalysis and nanomaterials are just two of the very promising application-oriented fields. Seventy six contributions, written by world experts in this research field, provide extensive coverage of different aspects of cluster chemistry, ranging from synthesis, structure determination, and dynamics to applications. Up-to-date information, including an impressive collection of structural data and illustrations, extensive coverage of the most important publications of the last decade, and many more features make this three-volume set a complete single-source guide for all researchers working in the area of cluster chemistry.
1999
9783527295494
9783527618316
Zanello, P., Fabrizi De Biani, F. (1999). Bimetallic effects on the redox activity of transition-metal carbonyl clusters. In Metal Clusters in Chemistry (pp. 1104-1136). WEINHEIM : Wiley-VCH [10.1002/9783527618316.ch3h].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/42589
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo