In this paper we use the algebraic approach to Discrete Tomography introduced by Hajdu and Tijdeman to study functions f :Z^2 → {−1, 0, +1} which have zero line sums along the lines corresponding to certain sets of four directions.

Brunetti, S., Dulio, P., Peri, C. (2011). Characterization of {-1,0,1} Valued Functions in Discrete Tomography under Sets of Four Directions. In Discrete Geometry for Computer Imagery (pp.394-405).

Characterization of {-1,0,1} Valued Functions in Discrete Tomography under Sets of Four Directions

BRUNETTI, SARA;
2011-01-01

Abstract

In this paper we use the algebraic approach to Discrete Tomography introduced by Hajdu and Tijdeman to study functions f :Z^2 → {−1, 0, +1} which have zero line sums along the lines corresponding to certain sets of four directions.
2011
9783642198663
Brunetti, S., Dulio, P., Peri, C. (2011). Characterization of {-1,0,1} Valued Functions in Discrete Tomography under Sets of Four Directions. In Discrete Geometry for Computer Imagery (pp.394-405).
File in questo prodotto:
File Dimensione Formato  
BDPDGCI11.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 193.34 kB
Formato Adobe PDF
193.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/31918
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo