In a series of papers published in the seventies, Grossberg has developed a geometric approach for analyzing the global dynamical behavior and convergence properties of a class of competitive dynamical systems. In this paper, Grossberg approach is extended to competitive standard cellular neural networks (CNNs), and it is used to investigate convergence of classes of non-symmetric competitive CNNs under the hypothesis that they induce a globally consistent decision scheme.
DI MARCO, M., Forti, M., Grazzini, M., Nistri, P., Pancioni, L. (2007). A Study on Convergence of Competitive CNNs. In IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007. (pp.3155-3158). IEEE [10.1109/ISCAS.2007.378100].
A Study on Convergence of Competitive CNNs
DI MARCO M.;FORTI M.;NISTRI P.;PANCIONI L.
2007-01-01
Abstract
In a series of papers published in the seventies, Grossberg has developed a geometric approach for analyzing the global dynamical behavior and convergence properties of a class of competitive dynamical systems. In this paper, Grossberg approach is extended to competitive standard cellular neural networks (CNNs), and it is used to investigate convergence of classes of non-symmetric competitive CNNs under the hypothesis that they induce a globally consistent decision scheme.File | Dimensione | Formato | |
---|---|---|---|
441930-U-GOV.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
235.36 kB
Formato
Adobe PDF
|
235.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/25694
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo