Several real-world problems (e.g., in bioinformatics/proteomics, or in recognition of video sequences) can be described as classification tasks over sequences of structured data, i.e. sequences of graphs, in a natural way. This paper presents a novel machine that can learn and carry out decision-making over sequences of graphical data. The machine involves a hidden Markov model whose state-emission probabilities are defined over graphs. This is realized by combining recursive encoding networks and constrained radial basis function networks. A global optimization algorithm which regards to the machine as a unity (instead of a bare superposition of separate modules) is introduced, via gradient-ascent over the maximum-likelihood criterion within a Baum-Welch-like forward-backward procedure. To the best of our knowledge, this is the first machine learning approach capable of processing sequences of graphs without the need of a pre-processing step. Preliminary results are reported.

Trentin, E., SHU JIA, Z., & Markus, H. (2010). Recognition of Sequences of Graphical Patterns. In Proceedings of ANNPR 2010 (ArtificialNeural Networks in Pattern Recognition, Fourth IAPR Workshop) (pp.48-59). Springer [10.1007/978-3-642-12159-3_5].

Recognition of Sequences of Graphical Patterns

TRENTIN, EDMONDO;
2010

Abstract

Several real-world problems (e.g., in bioinformatics/proteomics, or in recognition of video sequences) can be described as classification tasks over sequences of structured data, i.e. sequences of graphs, in a natural way. This paper presents a novel machine that can learn and carry out decision-making over sequences of graphical data. The machine involves a hidden Markov model whose state-emission probabilities are defined over graphs. This is realized by combining recursive encoding networks and constrained radial basis function networks. A global optimization algorithm which regards to the machine as a unity (instead of a bare superposition of separate modules) is introduced, via gradient-ascent over the maximum-likelihood criterion within a Baum-Welch-like forward-backward procedure. To the best of our knowledge, this is the first machine learning approach capable of processing sequences of graphs without the need of a pre-processing step. Preliminary results are reported.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/24543
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo