This paper presents a novel neural network model, called similarity neural network (SNN), designed to learn similarity measures for pairs of patterns. The model guarantees to compute a non negative and symmetric measure, and shows good generalization capabilities even if a very small set of supervised examples is used for training. Preliminary experiments, carried out on some UCI datasets, are presented, showing promising results.

Melacci, S., Sarti, L., Maggini, M., Bianchini, M. (2008). A neural network approach to similarity learning. In Artificial Neural Networks in Pattern Recognition (pp.133-136). Berlin : Springer Verlag [10.1007/978-3-540-69939-2_13].

A neural network approach to similarity learning

MELACCI, STEFANO;SARTI, LORENZO;MAGGINI, MARCO;BIANCHINI, MONICA
2008-01-01

Abstract

This paper presents a novel neural network model, called similarity neural network (SNN), designed to learn similarity measures for pairs of patterns. The model guarantees to compute a non negative and symmetric measure, and shows good generalization capabilities even if a very small set of supervised examples is used for training. Preliminary experiments, carried out on some UCI datasets, are presented, showing promising results.
2008
978-3-540-69938-5
Melacci, S., Sarti, L., Maggini, M., Bianchini, M. (2008). A neural network approach to similarity learning. In Artificial Neural Networks in Pattern Recognition (pp.133-136). Berlin : Springer Verlag [10.1007/978-3-540-69939-2_13].
File in questo prodotto:
File Dimensione Formato  
ANNPR08.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 150.37 kB
Formato Adobe PDF
150.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/23166
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo