In this paper, we propose a new recursive neural network model, able to process directed acyclic graphs with labelled edges. The model is based on a different definition of the state transition function, which is independent both from the number and the order of the children of each node. In fact, the particular contribution of each child is encoded in the label attached to the corresponding edge. The computational capabilities of the new recursive architecture are also assessed.

Bianchini, M., Maggini, M., Sarti, L., Scarselli, F. (2004). Recursive Neural Networks for Processing Graphs with Labelled Edges. In European Symposium on Artificial Neural Networks (ESANN2004) (pp.1040-1050). Oxford : PERGAMON-ELSEVIER SCIENCE LTD.

Recursive Neural Networks for Processing Graphs with Labelled Edges

BIANCHINI, MONICA;MAGGINI, MARCO;SARTI, LORENZO;SCARSELLI, FRANCO
2004-01-01

Abstract

In this paper, we propose a new recursive neural network model, able to process directed acyclic graphs with labelled edges. The model is based on a different definition of the state transition function, which is independent both from the number and the order of the children of each node. In fact, the particular contribution of each child is encoded in the label attached to the corresponding edge. The computational capabilities of the new recursive architecture are also assessed.
2004
9782930307046
Bianchini, M., Maggini, M., Sarti, L., Scarselli, F. (2004). Recursive Neural Networks for Processing Graphs with Labelled Edges. In European Symposium on Artificial Neural Networks (ESANN2004) (pp.1040-1050). Oxford : PERGAMON-ELSEVIER SCIENCE LTD.
File in questo prodotto:
File Dimensione Formato  
ESANN-04.PDF

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 171.73 kB
Formato Adobe PDF
171.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/22756
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo