The Graph Neural Network is a relatively new machine learning method capable of encoding data as well as relationships between data elements. This paper applies the Graph Neural Network for the first time to a given learning task at an international competition on the classification of semi-structured documents. Within this setting, the Graph Neural Network is trained to encode and process a relatively large set of XML formatted documents. It will be shown that the performance using the Graph Neural Network approach significantly outperforms the results submitted by the best competitor.

S. L., Y., M., H., A. C., T., Scarselli, F., Gori, M. (2006). Document Mining using Graph Neural Network. In Comparative Evaluation of XML Information Retrieval Systems (pp.458-472). Springer Berlin Heidelberg [10.1007/978-3-540-73888-6_43].

Document Mining using Graph Neural Network

SCARSELLI, FRANCO;GORI, MARCO
2006-01-01

Abstract

The Graph Neural Network is a relatively new machine learning method capable of encoding data as well as relationships between data elements. This paper applies the Graph Neural Network for the first time to a given learning task at an international competition on the classification of semi-structured documents. Within this setting, the Graph Neural Network is trained to encode and process a relatively large set of XML formatted documents. It will be shown that the performance using the Graph Neural Network approach significantly outperforms the results submitted by the best competitor.
2006
9783540738879
9783540738886
S. L., Y., M., H., A. C., T., Scarselli, F., Gori, M. (2006). Document Mining using Graph Neural Network. In Comparative Evaluation of XML Information Retrieval Systems (pp.458-472). Springer Berlin Heidelberg [10.1007/978-3-540-73888-6_43].
File in questo prodotto:
File Dimensione Formato  
inex2006GNN.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 195.73 kB
Formato Adobe PDF
195.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/18289
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo