We describe the qualitative properties of the solutions of the second order scalar equation ẍ + q(t)g(x) = 0, where q is a changing sign function, and consider the problem of existence and multiplicity of solutions which satisfy various different boundary conditions. In particular we outline some difficulties which arise in the use of the shooting approach.

Papini, D., Zanolin, F. (2002). Differential equations with indefinite weight: boundary value problems and qualitative properties of the solutions. In Turin Fortnight Lectures on Nonlinear Analysis (pp.265-295). Rendiconti del seminario matematico.

Differential equations with indefinite weight: boundary value problems and qualitative properties of the solutions

PAPINI D.;
2002-01-01

Abstract

We describe the qualitative properties of the solutions of the second order scalar equation ẍ + q(t)g(x) = 0, where q is a changing sign function, and consider the problem of existence and multiplicity of solutions which satisfy various different boundary conditions. In particular we outline some difficulties which arise in the use of the shooting approach.
2002
Papini, D., Zanolin, F. (2002). Differential equations with indefinite weight: boundary value problems and qualitative properties of the solutions. In Turin Fortnight Lectures on Nonlinear Analysis (pp.265-295). Rendiconti del seminario matematico.
File in questo prodotto:
File Dimensione Formato  
37908_UPLOAD.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 193.26 kB
Formato Adobe PDF
193.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/17439
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo