The doctoral project focused on three research topics in the framework of novel approaches for intestine targeting: the development of a microencapsulation system for probiotics to be used in the formulation of new functional foods, and the study of two in vitro models of the intestinal tract, aimed at providing new technologies for investigating the intestinal epithelium and its interactions with probiotics (both encapsulated and non-encapsulated), nutraceuticals, and drugs. The first focused on developing a microencapsulation system for probiotics using electrohydrodynamic microdripping of gellan gum solutions. Lactobacillus fermentum was used as a model probiotic to optimize encapsulation conditions, assess particle formation, and evaluate encapsulation efficiency, probiotic viability, and metabolic activity. The encapsulated cells retained high viability and metabolic function and were shown to exert direct antimicrobial activity against Escherichia coli and stimulate the production of human beta defensin 2 on the Caco-2 intestinal cell line in a comparable manner to unencapsulated cells. The second part involved creating an in vitro 3D model of the intestinal tract by growing Caco-2 cells on electrospun tubular scaffolds made of polycaprolactone and polyacrylonitrile. These materials mimicked the structural and mechanical features of the intestinal lumen. PAN scaffolds, in particular, offered better performance due to their higher porosity, mechanical strength, and piezoelectric properties. A custom seeding system was developed to enable uniform cell distribution, and a bioreactor was designed and tested to apply mechanical stress to the cultured cells. Biological assays confirmed good cell adhesion, growth, and viability. The third research focus was the creation of a 3D-printed scaffold-on-chip device, using hydrogels such as gelatin methacryloyl (GelMA) and poly(ethylene glycol) diacrylate (PEGDA), to replicate the complex architecture of intestinal crypts and villi within a microfluidic device. Parameters like polymer concentration, light exposure, and printing fidelity were optimized to produce cytocompatible scaffolds with tunable mechanical properties. Caco-2 cells adhered well, showed high metabolic activity, and formed a differentiated epithelial layer aligned with the scaffold’s topography, as confirmed by molecular and protein analyses. The device also sustained a continuous perfusion at different flow rates, which will be exploited for future studies in dynamic conditions. Overall, the project provided new tools for probiotic delivery and advanced in vitro platforms for studying gut epithelium interactions with probiotics, nutraceuticals, and pharmaceuticals.
Il progetto di dottorato si è concentrato su tre tematiche di ricerca nell’ambito di approcci innovativi per il targeting intestinale: lo sviluppo di un sistema di microincapsulamento di probiotici, da impiegare nella formulazione di nuovi alimenti funzionali, e lo studio di due modelli in vitro del tratto intestinale, finalizzati a fornire nuove tecnologie per lo studio dell’epitelio intestinale e delle sue interazioni con probiotici, nutraceutici e farmaci. La prima parte ha riguardato lo sviluppo di un sistema di microincapsulamento di probiotici mediante microdripping elettroidrodinamico di soluzioni a base di gomma di gellano. È stato utilizzato Lactobacillus fermentum come probiotico modello per ottimizzare le condizioni di incapsulamento ed analizzarne l’efficienza, oltre alla vitalità e l’attività metabolica dei probiotici incapsulati. Le cellule incapsulate hanno mantenuto un’elevata vitalità e funzionalità metabolica, dimostrando anche un’attività antimicrobica diretta contro Escherichia coli e la capacità di stimolare la produzione di beta-defensina umana 2 nella linea cellulare intestinale Caco-2, in modo paragonabile alle cellule non incapsulate. La seconda parte del lavoro ha previsto lo studio di un modello in vitro 3D del tratto intestinale, coltivando cellule della linea Caco-2 su scaffold tubolari realizzati tramite elettrofilatura, composti da policaprolattone e poliacrilonitrile. Tali scaffold hanno riprodotto le caratteristiche strutturali e meccaniche del lume intestinale. In particolare, gli scaffold in PAN hanno offerto prestazioni superiori grazie alla maggiore porosità, resistenza meccanica e piezoelettricità. Sono stati inoltre sviluppati un sistema di semina per garantire una distribuzione cellulare omogenea e un bioreattore per applicare uno stress meccanico alle cellule cresciute sugli scaffold. I saggi biologici hanno confermato una buona adesione, crescita e vitalità cellulare. La terza linea di ricerca ha riguardato lo sviluppo di uno scaffold-on-chip, utilizzando idrogeli come GelMA e PEGDA per replicare l’architettura complessa delle cripte e dei villi intestinali all’interno di un dispositivo microfluidico. I parametri di stampa sono stati ottimizzati al fine di produrre scaffold citocompatibili con proprietà meccaniche modulabili. Le cellule della linea Caco-2 hanno mostrato buona adesione, elevata attività metabolica e la formazione di uno strato epiteliale differenziato che segue la topografia dello scaffold come confermato da analisi molecolari e proteiche. Il dispositivo permette inoltre una perfusione continua, per futuri studi in regimi dinamici. Nel complesso, il progetto ha fornito nuovi strumenti per la somministrazione di probiotici e piattaforme in vitro avanzate per lo studio dell’epitelio intestinale.
Zavagna, L. (2025). Innovative Approaches to Target the Intestinal Epithelium: Gellan Gum Microparticles for Probiotic Delivery and Development of 3D In Vitro Models [10.25434/lorenzo-zavagna_phd2025-04-22].
Innovative Approaches to Target the Intestinal Epithelium: Gellan Gum Microparticles for Probiotic Delivery and Development of 3D In Vitro Models
Lorenzo Zavagna
2025-04-22
Abstract
The doctoral project focused on three research topics in the framework of novel approaches for intestine targeting: the development of a microencapsulation system for probiotics to be used in the formulation of new functional foods, and the study of two in vitro models of the intestinal tract, aimed at providing new technologies for investigating the intestinal epithelium and its interactions with probiotics (both encapsulated and non-encapsulated), nutraceuticals, and drugs. The first focused on developing a microencapsulation system for probiotics using electrohydrodynamic microdripping of gellan gum solutions. Lactobacillus fermentum was used as a model probiotic to optimize encapsulation conditions, assess particle formation, and evaluate encapsulation efficiency, probiotic viability, and metabolic activity. The encapsulated cells retained high viability and metabolic function and were shown to exert direct antimicrobial activity against Escherichia coli and stimulate the production of human beta defensin 2 on the Caco-2 intestinal cell line in a comparable manner to unencapsulated cells. The second part involved creating an in vitro 3D model of the intestinal tract by growing Caco-2 cells on electrospun tubular scaffolds made of polycaprolactone and polyacrylonitrile. These materials mimicked the structural and mechanical features of the intestinal lumen. PAN scaffolds, in particular, offered better performance due to their higher porosity, mechanical strength, and piezoelectric properties. A custom seeding system was developed to enable uniform cell distribution, and a bioreactor was designed and tested to apply mechanical stress to the cultured cells. Biological assays confirmed good cell adhesion, growth, and viability. The third research focus was the creation of a 3D-printed scaffold-on-chip device, using hydrogels such as gelatin methacryloyl (GelMA) and poly(ethylene glycol) diacrylate (PEGDA), to replicate the complex architecture of intestinal crypts and villi within a microfluidic device. Parameters like polymer concentration, light exposure, and printing fidelity were optimized to produce cytocompatible scaffolds with tunable mechanical properties. Caco-2 cells adhered well, showed high metabolic activity, and formed a differentiated epithelial layer aligned with the scaffold’s topography, as confirmed by molecular and protein analyses. The device also sustained a continuous perfusion at different flow rates, which will be exploited for future studies in dynamic conditions. Overall, the project provided new tools for probiotic delivery and advanced in vitro platforms for studying gut epithelium interactions with probiotics, nutraceuticals, and pharmaceuticals.| File | Dimensione | Formato | |
|---|---|---|---|
|
phd_unisi_120545.pdf
embargo fino al 10/04/2026
Descrizione: Tesi di dottorato di Lorenzo Zavagna
Tipologia:
PDF editoriale
Licenza:
Dominio pubblico
Dimensione
6.28 MB
Formato
Adobe PDF
|
6.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1290717
