For S a positive selfadjoint operator on a Hilbert space, d2u dt (t)+2F(S)du dt (t)+S2u(t)=0 describes a class of wave equations with strong friction or damping if F is a positive Borel function. Under suitable hypotheses, it is shown that u(t)=v(t)+w(t) where v satisfies and 2F(S) dv dt (t)+S2v(t)=0 w(t) v(t) →0, as t →+∞. The required initial condition v(0) is given in a canonical way in terms of u(0), u′(0).

Fragnelli, G., Goldstein, G.R., Goldstein, J.A., Romanelli, S. (2013). Asymptotic parabolicity for strongly damped wave equations. In Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy’s 60th Birthday (pp.119-131). American Mathematical Society [10.1090/pspum/087/01432].

Asymptotic parabolicity for strongly damped wave equations

G. FRAGNELLI
;
2013-01-01

Abstract

For S a positive selfadjoint operator on a Hilbert space, d2u dt (t)+2F(S)du dt (t)+S2u(t)=0 describes a class of wave equations with strong friction or damping if F is a positive Borel function. Under suitable hypotheses, it is shown that u(t)=v(t)+w(t) where v satisfies and 2F(S) dv dt (t)+S2v(t)=0 w(t) v(t) →0, as t →+∞. The required initial condition v(0) is given in a canonical way in terms of u(0), u′(0).
2013
978-0-8218-7574-2
978-1-4704-0946-3
Fragnelli, G., Goldstein, G.R., Goldstein, J.A., Romanelli, S. (2013). Asymptotic parabolicity for strongly damped wave equations. In Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy’s 60th Birthday (pp.119-131). American Mathematical Society [10.1090/pspum/087/01432].
File in questo prodotto:
File Dimensione Formato  
FrGGR2_journal.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 172.77 kB
Formato Adobe PDF
172.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1276637