The paper presents the activities of the TUS:CAN project, funded by ASI, the Italian Space Agency, and focuses on the experimental results obtained at the end of the first year. A Google Earth Engine implementation has been designed for spaceborne image collection and handling, spatial resolution enhancement, classification, and cross-validation with airborne hyperspectral image data and in situ spectral signature acquisitions. Initial trials using Sentinel-2 multispectral imagery over a 95 km 2 area validate the reliability and consistency of a technique to categorize and quantitatively assess natural and man-made land covers, aimed at updating maps and promoting sustainable land use.

Rindinella, A., Beltramone, L., Garzelli, A., Tabarrani, I., Vanneschi, C., D'Amato, L., et al. (2024). Urban Land Classification Through The Analysis of Satellite and Aerial Hyperspectral Data in Tuscany Region (TUS:CAN Project). In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium (pp.1394-1397). New York : IEEE [10.1109/igarss53475.2024.10640852].

Urban Land Classification Through The Analysis of Satellite and Aerial Hyperspectral Data in Tuscany Region (TUS:CAN Project)

Rindinella, Andrea;Beltramone, Luisa;Garzelli, Andrea
;
Salvini, Riccardo
2024-01-01

Abstract

The paper presents the activities of the TUS:CAN project, funded by ASI, the Italian Space Agency, and focuses on the experimental results obtained at the end of the first year. A Google Earth Engine implementation has been designed for spaceborne image collection and handling, spatial resolution enhancement, classification, and cross-validation with airborne hyperspectral image data and in situ spectral signature acquisitions. Initial trials using Sentinel-2 multispectral imagery over a 95 km 2 area validate the reliability and consistency of a technique to categorize and quantitatively assess natural and man-made land covers, aimed at updating maps and promoting sustainable land use.
2024
979-8-3503-6032-5
Rindinella, A., Beltramone, L., Garzelli, A., Tabarrani, I., Vanneschi, C., D'Amato, L., et al. (2024). Urban Land Classification Through The Analysis of Satellite and Aerial Hyperspectral Data in Tuscany Region (TUS:CAN Project). In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium (pp.1394-1397). New York : IEEE [10.1109/igarss53475.2024.10640852].
File in questo prodotto:
File Dimensione Formato  
Urban_Land_Classification_Through_The_Analysis_of_Satellite_and_Aerial_Hyperspectral_Data_in_Tuscany_Region_TUSCAN_Project.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1274954