Cilia and flagella are evolutionarily conserved organelles protruding from the surface of the eukaryotic cell. They are involved both in cell motility and in several signalling pathways controlling organism development, growth and homeostasis. Cilia and flagella are not provided with the molecular machinery required for protein synthesis. Therefore, their assembly and maintenance depend on a bidirectional transport mechanism, known as the IntraFlagellar Transport (IFT). IFT is carried on by macromolecular complexes named IFT trains in the space between the microtubular doublets and the overlaying flagellar membrane. The process is driven by the anterograde motor, kinesin-2, which moves ciliary precursors from the cellular body towards the ciliary tip, where assembly takes place, (anterograde transport), and by the retrograde motor, dynein-2, which transports the turnover products back to the ciliary base (retrograde transport). My doctoral project has been focused on two still undefined aspects of IFT in the model organism Chlamydomonas reinhardtii: i) the tip district organization which is the site where the conversion of anterograde to retrograde transport (turnaround process) occurs and ii) the role that specific lipids might play in the IFT trains-membrane interactions. The distal ciliary compartment is structurally differentiated from the ciliary shaft and exhibits complex capping structures at the end of the central pair microtubules. The results herein reported represent the first evidence for the dissociation event that IFT particles undergo during their turnaround at the flagellar tip. Using electron microscopy and biochemical approaches, we demonstrated that the IFT172 protein dissociates from the so-called IFT-B complex and localizes on a specialized region of the distal axoneme, the tip sheet. Furthermore, we could establish that IFT172 dissociation is influenced by its phosphorylation state. By bioinformatic analyses and molecular dynamics simulations we were able to predict that a specific IFT172 tyrosine residue can undergo phosphorylation/dephosphorylation events, possibly implicated in the control of IFT172 dissociation during IFT turnaround. Cilia and flagella have a membrane lipid composition distinct from that of the cell body plasma membrane and it is well known that IFT trains closely associate with the ciliary membrane. Although the available information concerning the role that lipids may play during IFT process is limited, some data suggest a requirement for sphingolipids, particularly ceramides, in ciliogenesis. To investigate this aspect, we analyzed the effects induced by an alteration of flagellar ceramide content using two drugs: Myriocin, which blocks ceramide biosynthesis, and D-NMAPPD, a ceramidase inhibitor. The results we obtained indicate that when the total amount of ceramide is decreased by Myriocin, flagellar length is significantly shorter. Moreover, the architecture of the anterograde trains and the frequency of the retrograde trains are affected. After D-NMAPPD treatment, the flagellar membrane appears to become less soluble to detergent treatment, indicating an enhancement of membrane rigidity. Concomitantly, IFT proteins become more strictly associated to the flagellar membrane and fractionate with flagellar membrane vesicles after purified flagella were extracted with 1% Triton X-100 at 4°C. Taken together, these data indicate that ceramide is directly involved in the interaction between IFT trains and the membrane and is required for the structural integrity of IFT trains as well as cilia function.
Ciglia e flagelli sono organelli evolutivamente conservati presenti sulla superficie di molte cellule eucariotiche, dove sono coinvolti sia in processi di motilità cellulare che in diverse vie di segnalazione che regolano lo sviluppo, la crescita e l’omeostasi dell’organismo. Ciglia e flagelli non sono provvisti del macchinario necessario per la sintesi proteica, quindi, il loro assemblaggio e il loro mantenimento dipendono dalla presenza di un meccanismo di trasporto bidirezionale, conosciuto come Trasporto IntraFlagellare (IFT). In questo processo sono coinvolti complessi macromolecolari denominati treni IFT che si muovono nello spazio compreso tra i doppetti microtubulari e la membrana flagellare sovrastante. I treni IFT sono guidati da un motore anterogrado, la chinesina-2, adibito al trasporto di precursori ciliari dal corpo cellulare al tip ciliare, dove si trova il sito di assemblaggio (trasporto anterogrado), e da un motore retrogrado, la dineina-2, che trasporta i prodotti del turnover ciliare verso il corpo cellulare (trasporto retrogrado). Lo sviluppo del mio progetto di dottorato si è concentrato su due aspetti ancora non ben definiti del trasporto intraflagellare (IFT) nell’organismo modello Chlamydomonas reinhardtii: i) l'organizzazione del dominio distale (tip), che rappresenta il sito dove avviene la conversione del trasporto anterogrado a retrogrado (turnaround), e ii) il ruolo che determinate molecole lipidiche possano svolgere nelle interazioni tra treni IFT e membrana. Il compartimento distale è strutturalmente differenziato dal resto del flagello e nel tratto terminale dei microtubuli del complesso centrale presenta strutture specializzate. I risultati qui riportati rappresentano la prima evidenza dell'evento di dissociazione che le particelle IFT subiscono durante il processo di turnaround al tip ciliare. Attraverso l’utilizzo di tecniche di microscopia elettronica e di biochimica, abbiamo dimostrato che la proteina IFT172 si dissocia dal cosiddetto complesso IFT-B e si localizza su una regione specializzata dell'assonema distale, definita tip sheet. Inoltre, abbiamo potuto stabilire che la dissociazione di IFT172 dipende dal suo stato di fosforilazione. Tramite analisi bioinformatiche e simulazioni di dinamica molecolare, abbiamo predetto che uno specifico residuo di tirosina di IFT172 potrebbe andare incontro ad eventi di fosforilazione/de-fosforilazione, possibilmente implicati nel controllo della dissociazione di IFT172 durante il processo di turnaround. Ciglia e flagelli presentano una composizione lipidica della membrana distinta dalla membrana plasmatica del corpo cellulare ed è noto che i treni IFT mantengano una stretta associazione con la membrana ciliare. Nonostante le informazioni disponibili riguardanti il ruolo che i lipidi possano svolgere durante il processo IFT siano limitate, alcune evidenze suggeriscono un coinvolgimento dei fosfolipidi, in particolare delle ceramidi, durante la ciliogenesi. Per studiare ulteriormente questo aspetto, abbiamo analizzato gli effetti indotti da un'alterazione dei livelli di ceramide nel flagello, utilizzando due inibitori enzimatici: la Miriocina, la quale interferisce con la biosintesi della ceramide, e il D-NMAPPD, un inibitore della ceramidasi. I risultati ottenuti indicano che, quando la quantità totale di ceramide è ridotta dalla presenza della Miriocina, la lunghezza flagellare si riduce in maniera significativa. Inoltre, l'architettura dei treni anterogradi e la frequenza dei treni retrogradi sono alterati. Dopo il trattamento con il D-NMAPPD la membrana flagellare risulta essere meno solubile al trattamento con detergente, indicando un aumento del livello di rigidità della membrana. In parallelo, le proteine IFT rimangono più strettamente associate alla membrana flagellare, ma anche a vescicole di membrana dopo che flagelli isolati sono stati estratti con Triton X-100 1% a 4°C. L’insieme di questi dati suggerisce che la ceramide è direttamente coinvolta nell’interazione tra treni IFT e membrana flagellare ed è richiesta sia per l’integrità strutturale dei treni IFT che per la funzionalità ciliare.
Corbo, D., Mencarelli, C., Lupetti, P. (2024). New evidence on IFT turnaround at the flagellar tip and the association of IFT trains with the flagellar membrane in the model organism Chlamydomonas reinhardtii [10.25434/dalia-corbo_phd2024-07-12].
New evidence on IFT turnaround at the flagellar tip and the association of IFT trains with the flagellar membrane in the model organism Chlamydomonas reinhardtii
Dalia Corbo;Caterina Mencarelli;Pietro Lupetti
2024-07-12
Abstract
Cilia and flagella are evolutionarily conserved organelles protruding from the surface of the eukaryotic cell. They are involved both in cell motility and in several signalling pathways controlling organism development, growth and homeostasis. Cilia and flagella are not provided with the molecular machinery required for protein synthesis. Therefore, their assembly and maintenance depend on a bidirectional transport mechanism, known as the IntraFlagellar Transport (IFT). IFT is carried on by macromolecular complexes named IFT trains in the space between the microtubular doublets and the overlaying flagellar membrane. The process is driven by the anterograde motor, kinesin-2, which moves ciliary precursors from the cellular body towards the ciliary tip, where assembly takes place, (anterograde transport), and by the retrograde motor, dynein-2, which transports the turnover products back to the ciliary base (retrograde transport). My doctoral project has been focused on two still undefined aspects of IFT in the model organism Chlamydomonas reinhardtii: i) the tip district organization which is the site where the conversion of anterograde to retrograde transport (turnaround process) occurs and ii) the role that specific lipids might play in the IFT trains-membrane interactions. The distal ciliary compartment is structurally differentiated from the ciliary shaft and exhibits complex capping structures at the end of the central pair microtubules. The results herein reported represent the first evidence for the dissociation event that IFT particles undergo during their turnaround at the flagellar tip. Using electron microscopy and biochemical approaches, we demonstrated that the IFT172 protein dissociates from the so-called IFT-B complex and localizes on a specialized region of the distal axoneme, the tip sheet. Furthermore, we could establish that IFT172 dissociation is influenced by its phosphorylation state. By bioinformatic analyses and molecular dynamics simulations we were able to predict that a specific IFT172 tyrosine residue can undergo phosphorylation/dephosphorylation events, possibly implicated in the control of IFT172 dissociation during IFT turnaround. Cilia and flagella have a membrane lipid composition distinct from that of the cell body plasma membrane and it is well known that IFT trains closely associate with the ciliary membrane. Although the available information concerning the role that lipids may play during IFT process is limited, some data suggest a requirement for sphingolipids, particularly ceramides, in ciliogenesis. To investigate this aspect, we analyzed the effects induced by an alteration of flagellar ceramide content using two drugs: Myriocin, which blocks ceramide biosynthesis, and D-NMAPPD, a ceramidase inhibitor. The results we obtained indicate that when the total amount of ceramide is decreased by Myriocin, flagellar length is significantly shorter. Moreover, the architecture of the anterograde trains and the frequency of the retrograde trains are affected. After D-NMAPPD treatment, the flagellar membrane appears to become less soluble to detergent treatment, indicating an enhancement of membrane rigidity. Concomitantly, IFT proteins become more strictly associated to the flagellar membrane and fractionate with flagellar membrane vesicles after purified flagella were extracted with 1% Triton X-100 at 4°C. Taken together, these data indicate that ceramide is directly involved in the interaction between IFT trains and the membrane and is required for the structural integrity of IFT trains as well as cilia function.File | Dimensione | Formato | |
---|---|---|---|
phd_unisi_106741.pdf
embargo fino al 02/07/2025
Descrizione: Tesi Dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
7.99 MB
Formato
Adobe PDF
|
7.99 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1264434