The research activity presented in this thesis concerns the identification and study of tools and methodologies for evaluating the environmental and economic performance of production systems and, ultimately, their sustainability, to be applied to systems for generating electricity from renewable sources. In particular, two focuses were developed on: - The production of energy by treating the Organic Fraction of Municipal Solid Waste (OFMSW); - Energy production from seas and oceans. Within the framework of the Horizon 2020 DECISIVE (DECentralIzed management Scheme for Innovative Valorization of urban biowastE) project, the implementation of a new, small-scale, decentralized organic fraction of municipal solid waste management and treatment system was evaluated in the municipality of San Dorligo della Valle - Dolina (Friuli-Venezia Giulia, Italy). The DECISIVE model involves the integration of two units: an anaerobic digester (AD) for biogas production and a solid state fermentation (SSF) system for the production of high-quality biopesticides from raw digestate. Three scenarios (S0, S1 and S2) were modelled, two of which (S1 and S2) evaluated the impact of different post-treatment practices of raw digestate on the environmental and economic performance of the system and within the analysed site. The Life Cycle Assessment (LCA) methodology was adopted to analyse the environmental dimension of the pilot system, which showed solid performance, especially for S1 and S2, in the five impact categories on which the analysis focused (Global Warming - GW, Terrestrial Acidification - TA, Freshwater Eutrophication - FE, Fossil Resource Scarcity - FRS and Human Toxicity - HT). For Global Warming, energy production through biogas combustion and avoided impacts from the production of inorganic pesticides contributed to negative net impacts. In S1 and S2, the net savings in greenhouse gas emissions were found to be in line with those of other studies in the literature. Regarding the Terrestrial Acidification and Freshwater Eutrophication categories, again, in S2 the totals presented negative values due to avoided emissions given by the substitution of inorganic pesticides. Moreover, in all scenarios, the avoided impact given by conventional heat and electricity production, respectively, is evidenced by the negative net values of the Fossil Resource Scarcity impact category. This result can be attributed to the benefits from the combined heat and power process. Finally, the Human Toxicity category showed a progressive improvement in performance as the scenarios evolved. The DECISIVE model was also analysed with respect to the economic dimension, through Cost Benefit Analysis (CBA). To assess the profitability of the project as a whole, the financial analysis was conducted, followed by the economic analysis. Both analyses involved the calculation of project performance indicators, namely: the financial Net Present Value (FNPV) and economic Net Present Value (ENPV) and the financial Internal Rate of Return (FIRR) and economic Internal Rate of Return (EIRR). The Cost Benefit Analysis confirmed a result previously obtained in LCA, for the S2 scenario. Specifically, the financial and economic analysis showed positive Net Present Value and Internal Rate of Return for S2. It emerges, in this case, that not only is the project financially viable, but also socially desirable. This result (particularly for Internal Rate of Return) comes, for the most part, from the given revenues from biopesticide production, which are the main contributor to the total benefits of the scenario. Project profitability, on the other hand, was not achieved for S0 and S1, which have negative financial Net Present Values. This suggests that, in both scenarios, the investment is not financially viable when only the anaerobic digestion unit is implemented, even after taking into account the benefits obtainable from replacing mineral fertilizer with solid digestate (S1). This result is also confirmed by the financial Internal Rate of Return, which is lower than the applied discount rate (6%; Asher, 2020) in both scenarios. In terms of the economic analysis, S0 and S1 also presented negative economic Net Present Value. The same is true for the economic Internal Rate of Return. This suggests that, once again, the project is unable to generate social benefits. The results suggest that if anaerobic digestion plants were implemented on a small scale, they would represent a favourable investment for local communities; particularly when considering the possibility of harnessing the benefits given by nutrient recovery through full post-treatment processes of raw digestate (S2), as well as renewable energy production. Moreover, the valorisation of organic residues could be supported by the introduction of alternative policy instruments aimed at encouraging the implementation of financing schemes to support small-scale renewable energy production systems. Next, LCA was applied to assess the potential environmental impacts of using Blue Energy (BE) capable of capturing wave and offshore wind energy in the Mediterranean basin. For Wave Energy Converters (WECs), three technologies were selected, namely: an onshore Oscillating Water Column (OWC) system, a device composed of onshore oscillating bodies (oscillating floaters), and a nearshore buoy. For the exploitation of offshore wind potential, on the other hand, the focus was on two floating wind turbine models (raft-buoy and spar-buoy, both having 6 MW installed capacity). Specifically, LCA was used to account for the potential environmental impact, in terms of Carbon Footprint (CF), of these Blue Energy devices throughout their lifecycle, from manufacturing of material components to decommissioning and end of life. The results showed that the manufacturing phase of the structural components has the greatest impact in terms of Carbon Footprint. Specifically, in the case of Wave Energy Converters systems, this phase covers 52% of total emissions, while for wind turbines it accounts for 75% for the raft-buoy model and nearly 70% for the spar-buoy model. The reason for such a result lies in the type and lifetime of the materials involved: concrete, steel and polyurethane for Wave Energy Converters systems and steel and fiberglass for raft-buoy and spar-buoy models. To compare the performance of the three different WECs and the two turbine models, the Carbon Intensity of Electricity (CIE) was evaluated by considering a range of electricity generation technologies, based on data to date available in the scientific literature. In addition, in the case of floating wind turbines, it was possible to use the potential productivity data from three different sites in the Mediterranean (Crete - Greece; Split - Croatia; and Larnaca - Cyprus). These primary data derived from the Transferring Labs organized and carried out during the BLUE DEAL project activities. Based on what is available in the literature, it was found that Wave Energy Converters can be promising solutions to capture wave energy, showing lower Carbon Intensity of Electricity values than fossil energy sources. However, technological improvements are needed to increase their efficiency and reach the performance of other renewable energy sources. The same is true for raft-buoy and spar-buoy models, as the results showed that the Carbon Intensity of Electricity of a single floating wind turbine is in line with values in other studies reported in the literature and with those for other renewable electricity generation systems (such as onshore wind and onshore photovoltaics). As part of the BLUE DEAL project and as a complement to the previously described analysis, in collaboration with the Department of Economics and Statistics, a statistical survey was conducted to detect perceptions and attitudes towards the possible implementation of Blue Energy technologies (including those under study in the LCA) in 12 different locations in the Mediterranean basin (Croatia, Greece, Albania, Malta, Cyprus, Spain, Italy, Slovenia). The scientific approach, underlying the analysis, served to assess the social dimension of sustainability. The survey results have shown that the majority of respondents are aware of climate change issues and believe that appropriate measures need to be taken to mitigate them. However, only a small percentage of respondents are aware of Blue Energy, highlighting the need for further research and development to apply these technologies on a commercial scale. In terms of hypotheses for their installation in the communities surveyed, all the technologies presented in the questionnaire received strong support, particularly the Oscillating Water Column system, which was seen as the least invasive. On the other hand, in terms of the potential impacts of implementing these technologies, most respondents were concerned about the impact on fauna and flora. Finally, respondents were generally positive about the benefits of implementing such devices in the study areas in terms of creating new jobs, achieving energy independence and mitigating climate change. The scientific approach underpinning the analysis was used to assess the social dimension of sustainability, demonstrating the importance of involving stakeholders, local authorities and citizens at an early stage in participatory energy planning processes. Indeed, in the energy transition process, the social dimension is an essential and crucial aspect to be taken into account when designing sustainable development plans and policies. In conclusion, this research has shown how the use of two different methodologies (LCA and Cost-Benefit Analysis) and environmental sustainability indicators, together with social analysis tools, makes it possible to carry out an assessment capable of providing indications of real and lasting sustainability. Indeed, the integration of socio-environmental information with financial information, exploiting the complementarity of the methodologies, provided a global vision of the potential impact of the systems and processes studied.

L'attività di ricerca presentata in questa tesi riguarda l’individuazione e lo studio di strumenti e metodologie di valutazione delle performance ambientali ed economiche di sistemi produttivi e, in ultima analisi, della loro sostenibilità, da applicare a sistemi per la generazione di energia elettrica da fonti rinnovabili. In particolare, sono stati sviluppati due focus che hanno riguardato: - La produzione di energia tramite trattamento della Frazione Organica dei Rifiuti Solidi Urbani (FORSU); - La produzione di energia da mari e oceani. Nell’ambito del progetto Horizon 2020 DECISIVE (DECentralIzed management Scheme for Innovative Valorization of urban biowastE) è stata valutata l'implementazione di un nuovo sistema di gestione e trattamento decentralizzato della frazione organica dei rifiuti solidi urbani (FORSU), su piccola scala, presso il comune di San Dorligo della Valle – Dolina (Friuli-Venezia Giulia, Italia). Il modello DECISIVE prevede l’integrazione di due unità: un digestore anaerobico (DA) per la produzione di biogas e un sistema di fermentazione allo stato solido (solid state fermentation – SSF) per la produzione di biopesticidi di alta qualità, a partire dal digestato grezzo. Sono stati modellati tre scenari (S0, S1 e S2), di cui due (S1 e S2) hanno valutato l'impatto di diverse pratiche di post-trattamento del digestato grezzo sulle prestazioni ambientali ed economiche del sistema e all'interno del sito analizzato. La metodologia Life Cycle Assessment (LCA) è stata adottata per analizzare la dimensione ambientale del sistema pilota, il quale ha mostrato solide prestazioni, soprattutto per S1 e S2, nelle cinque categorie di impatto sulle quali si è concentrata l’analisi (Global Warming - GW, Terrestrial Acidification - TA, Freshwater Eutrophication - FE, Fossil Resource Scarcity – FRS e Human Toxicity - HT). Per quanto riguarda il Global Warming, la produzione di energia attraverso la combustione del biogas e gli impatti evitati dalla produzione di pesticidi inorganici hanno contribuito all’ottenimento di impatti netti negativi. In S1 e S2, i risparmi netti in termini di emissioni di gas effetto serra sono risultati essere in linea con quelli di altri studi presenti in letteratura. Per quanto riguarda le categorie Terrestrial Acidification e Freshwater Eutrophication, anche in questo caso, in S2 i totali presentato valori negativi dovuti alle emissioni evitate date dalla sostituzione dei pesticidi inorganici. In tutti gli scenari, inoltre, l'impatto evitato dato rispettivamente dalla produzione convenzionale di calore ed elettricità, è evidenziato dai valori netti negativi della categoria di impatto Fossil Resource Scarcity. Tale risultato è da attribuire ai vantaggi derivanti dal processo di cogenerazione di calore ed elettricità. Infine, la categoria Human Toxicity ha evidenziato un progressivo miglioramento delle prestazioni con l'evolversi degli scenari. Il modello DECISIVE è stato analizzato anche relativamente alla dimensione economica, tramite l’Analisi Costi Benefici (ACB). Per valutare la redditività del progetto nel suo complesso è stata condotta l’analisi finanziaria e, successivamente, quella economica. Entrambe le analisi hanno previsto il calcolo degli indicatori di performance del progetto, ossia: il Valore Attuale Netto finanziario (VANF) ed economico (VANE) e il Tasso Interno di Rendimento finanziario (TIRF) ed economico (TIRE). L'Analisi Costi Benefici ha confermato un risultato precedentemente ottenuto in ambito LCA, per lo scenario S2. In particolare, l'analisi finanziaria ed economica hanno mostrato Valore Attuale Netto e Tasso Interno di Rendimento positivi per S2. Emerge, in tal caso, che non solo il progetto è finanziariamente conveniente, ma anche socialmente desiderabile. Tale risultato (in particolare per il Tasso Interno di Rendimento economico) deriva, per lo più, dai ricavi dati della produzione di biopesticida, che rappresentano il principale contributo ai benefici totali dello scenario. La redditività del progetto, invece, non è stata raggiunta per S0 e S1, che presentano Valore Attuale Netto finanziario negativo. Ciò suggerisce che, in entrambi gli scenari, l'investimento non è finanziariamente redditizio quando viene implementata solo l'unità di digestione anaerobica, anche dopo aver tenuto conto dei benefici ottenibili dalla sostituzione del fertilizzante minerale con il digestato solido (S1). Questo risultato è confermato anche dal Tasso Interno di Rendimento finanziario, che in entrambi gli scenari risulta essere inferiore al tasso di sconto applicato (6%; Asher, 2020). Anche per quanto riguarda l’analisi economica, S0 e S1 hanno presentato Valore Attuale Netto economico negativo. Lo stesso vale per il Tasso Interno di Rendimento economico. Ciò suggerisce che, ancora una volta, il progetto non è in grado di generare benefici sociali. Dai risultati raggiunti emerge che se gli impianti di digestione anaerobica venissero implementati su piccola scala, rappresenterebbero un investimento favorevole per le comunità locali; in particolare se si considera la possibilità di sfruttare i benefici dati dal recupero dei nutrienti attraverso processi di post-trattamento completo del digestato grezzo (S2), oltre che dalla produzione di energia rinnovabile. La valorizzazione dei residui organici, inoltre, potrebbe essere supportata dall'introduzione di strumenti politici alternativi volti a incoraggiare l'implementazione di schemi di finanziamento a sostegno dei sistemi di produzione di energia da fonti rinnovabili su piccola scala. Successivamente, la LCA è stata applicata per valutare i potenziali impatti ambientali derivanti dall’impiego delle Blue Energy (BE) capaci di catturare l’energia da moto ondoso e vento offshore nel bacino del Mediterraneo. Per i convertitori di energia da moto ondoso (Wave Energy Converters - WECs), sono state selezionare tre tecnologie, ossia: un sistema a colonne d'acqua oscillanti onshore (Oscillating Water Column – OWC), un dispositivo composto da corpi oscillanti onshore (oscillating floater) e una boa nearshore. Per lo sfruttamento del potenziale eolico offshore, invece, l’attenzione si è concentrata su due modelli di turbine eoliche flottanti (raft-buoy e spar-buoy, entrambi aventi 6 MW di potenza installata). Nello specifico, la LCA è stata utilizzata per tenere conto del potenziale impatto ambientale, in termini di Carbon Footprint (CF), di questi dispositivi Blue Energy lungo tutto il loro ciclo di vita, dalla fabbricazione delle componenti materiali alla dismissione e fine vita. Dai risultati è emerso che la fase di fabbricazione dei componenti strutturali è quella che più incide in termini di Carbon Footprint. In particolare, nel caso dei sistemi Wave Energy Converters, tale fase ricopre il 52% delle emissioni totali, mentre per le turbine eoliche essa rappresenta il 75% per il modello raft-buoy e quasi il 70% per quello spar-buoy. La ragione di un tale risultato è da ricercare nella tipologia e nel tempo di vita dei materiali coinvolti: cemento, acciaio e poliuretano per i sistemi Wave Energy Converters e acciaio e fibra di vetro per i modelli raft-buoy e spar-buoy. Per confrontare le prestazioni dei tre diversi Wave Energy Converters e dei due modelli di turbina, la Carbon Intensity of Electricity (CIE) è stata valutata considerando una gamma di tecnologie di produzione di elettricità, basata sui dati ad oggi disponibili in letteratura scientifica. Inoltre, nel caso delle turbine eoliche flottanti, è stato possibile utilizzare il dato di produttività potenziale di tre siti differenti del Mediterraneo (Creta – Grecia; Spalato – Croazia e Larnaca - Cipro). Questi dati primari derivano dai Transferring Lab organizzati e svolti durante le attività del progetto BLUE DEAL. Sulla base di quanto disponibile in letteratura, è emerso che i Wave Energy Converters possono essere soluzioni promettenti per catturare l'energia del moto ondoso, mostrando valori più bassi di Carbon Intensity of Electricity rispetto alle fonti energetiche fossili. Tuttavia, sono necessari miglioramenti tecnologici per aumentarne l'efficienza e raggiungere le prestazioni di altre fonti energetiche rinnovabili. Lo stesso vale per i modelli raft-buoy e spar-buoy, poiché i risultati hanno mostrato che la Carbon Intensity of Electricity di una singola turbina eolica flottante è in linea con i valori di altri studi riportati in letteratura e con quelli relativi ad altri sistemi per la produzione di elettricità da fonti rinnovabili (come l'eolico onshore e fotovoltaico a terra). Nell’ambito del progetto BLUE DEAL e a completamento dell’analisi precedentemente descritta, in collaborazione con il Dipartimento di Economia e Statistica, è stata condotta un’indagine statistica volta a rilevare la percezione e l'atteggiamento nei confronti della possibile implementazione di tecnologie BE (tra cui quelle oggetto di studio della LCA) in 12 differenti località del bacino del Mediterraneo (Croazia, Grecia, Albania, Malta, Cipro, Spagna, Italia, Slovenia). I risultati dell’indagine hanno evidenziato che la maggior parte degli intervistati è consapevole delle questioni legate al cambiamento climatico e ritiene che sia necessario adottare misure adeguate a mitigarlo. Tuttavia, solo una piccola percentuale degli intervistati conosce le Blue Energy, il che evidenzia la necessità di compiere maggiori sforzi in attività di ricerca e sviluppo per arrivare ad applicare tali tecnologie a scala commerciale. Provando a ipotizzarne l’installazione presso le comunità coinvolte dall’indagine, è emerso che tutte le tecnologie presentate nel questionario hanno trovato un forte sostegno, in particolare, l'impianto Oscillating Water Column che è stato considerato come il meno invasivo. Per quanto riguarda, invece, i potenziali impatti dati dall’implementazione di tali tecnologie, la maggiore parte degli intervistati ha evidenziato preoccupazione per gli effetti su fauna e flora. Mentre, relativamente ai vantaggi dati dall’implementazione di tali dispositivi nelle aree oggetto di studio, nel complesso i rispondenti ripongono fiducia nella creazione di nuovi posti di lavoro, nel raggiungimento dell’indipendenza energetica e nell’attenuazione del cambiamento climatico. L’approccio scientifico, alla base dell’analisi, è servito a valutare la dimensione sociale della sostenibilità, dimostrando l’importanza di coinvolgere stakeholder, autorità locali e cittadini nei processi di pianificazione energetica partecipativa, sin dalle prime fasi. Nel percorso di transizione energetica, infatti, la dimensione sociale è un aspetto imprescindibile e cruciale da considerare per la progettazione di piani e politiche di sviluppo sostenibile. In conclusione, questa ricerca ha messo in luce come l’applicazione di due differenti metodologie (LCA e Analisi Costi Benefici) e indicatori di sostenibilità ambientale, insieme a strumenti di analisi sociale, consenta di condurre una valutazione capace di dare indicazioni per una sostenibilità reale e duratura. L’integrazione di informazioni socio-ambientali con quelle finanziarie, sfruttando la complementarità delle metodologie, infatti, ha fornito una visione globale dell'impatto potenziale dei sistemi e processi studiati.

Bruno, M. (2023). Applicazione di metodologie e indicatori di sostenibilità ambientale per la valutazione di nuovi sistemi di produzione di energia da fonti rinnovabili [10.25434/bruno-morena_phd2023].

Applicazione di metodologie e indicatori di sostenibilità ambientale per la valutazione di nuovi sistemi di produzione di energia da fonti rinnovabili

BRUNO, MORENA
2023-01-01

Abstract

The research activity presented in this thesis concerns the identification and study of tools and methodologies for evaluating the environmental and economic performance of production systems and, ultimately, their sustainability, to be applied to systems for generating electricity from renewable sources. In particular, two focuses were developed on: - The production of energy by treating the Organic Fraction of Municipal Solid Waste (OFMSW); - Energy production from seas and oceans. Within the framework of the Horizon 2020 DECISIVE (DECentralIzed management Scheme for Innovative Valorization of urban biowastE) project, the implementation of a new, small-scale, decentralized organic fraction of municipal solid waste management and treatment system was evaluated in the municipality of San Dorligo della Valle - Dolina (Friuli-Venezia Giulia, Italy). The DECISIVE model involves the integration of two units: an anaerobic digester (AD) for biogas production and a solid state fermentation (SSF) system for the production of high-quality biopesticides from raw digestate. Three scenarios (S0, S1 and S2) were modelled, two of which (S1 and S2) evaluated the impact of different post-treatment practices of raw digestate on the environmental and economic performance of the system and within the analysed site. The Life Cycle Assessment (LCA) methodology was adopted to analyse the environmental dimension of the pilot system, which showed solid performance, especially for S1 and S2, in the five impact categories on which the analysis focused (Global Warming - GW, Terrestrial Acidification - TA, Freshwater Eutrophication - FE, Fossil Resource Scarcity - FRS and Human Toxicity - HT). For Global Warming, energy production through biogas combustion and avoided impacts from the production of inorganic pesticides contributed to negative net impacts. In S1 and S2, the net savings in greenhouse gas emissions were found to be in line with those of other studies in the literature. Regarding the Terrestrial Acidification and Freshwater Eutrophication categories, again, in S2 the totals presented negative values due to avoided emissions given by the substitution of inorganic pesticides. Moreover, in all scenarios, the avoided impact given by conventional heat and electricity production, respectively, is evidenced by the negative net values of the Fossil Resource Scarcity impact category. This result can be attributed to the benefits from the combined heat and power process. Finally, the Human Toxicity category showed a progressive improvement in performance as the scenarios evolved. The DECISIVE model was also analysed with respect to the economic dimension, through Cost Benefit Analysis (CBA). To assess the profitability of the project as a whole, the financial analysis was conducted, followed by the economic analysis. Both analyses involved the calculation of project performance indicators, namely: the financial Net Present Value (FNPV) and economic Net Present Value (ENPV) and the financial Internal Rate of Return (FIRR) and economic Internal Rate of Return (EIRR). The Cost Benefit Analysis confirmed a result previously obtained in LCA, for the S2 scenario. Specifically, the financial and economic analysis showed positive Net Present Value and Internal Rate of Return for S2. It emerges, in this case, that not only is the project financially viable, but also socially desirable. This result (particularly for Internal Rate of Return) comes, for the most part, from the given revenues from biopesticide production, which are the main contributor to the total benefits of the scenario. Project profitability, on the other hand, was not achieved for S0 and S1, which have negative financial Net Present Values. This suggests that, in both scenarios, the investment is not financially viable when only the anaerobic digestion unit is implemented, even after taking into account the benefits obtainable from replacing mineral fertilizer with solid digestate (S1). This result is also confirmed by the financial Internal Rate of Return, which is lower than the applied discount rate (6%; Asher, 2020) in both scenarios. In terms of the economic analysis, S0 and S1 also presented negative economic Net Present Value. The same is true for the economic Internal Rate of Return. This suggests that, once again, the project is unable to generate social benefits. The results suggest that if anaerobic digestion plants were implemented on a small scale, they would represent a favourable investment for local communities; particularly when considering the possibility of harnessing the benefits given by nutrient recovery through full post-treatment processes of raw digestate (S2), as well as renewable energy production. Moreover, the valorisation of organic residues could be supported by the introduction of alternative policy instruments aimed at encouraging the implementation of financing schemes to support small-scale renewable energy production systems. Next, LCA was applied to assess the potential environmental impacts of using Blue Energy (BE) capable of capturing wave and offshore wind energy in the Mediterranean basin. For Wave Energy Converters (WECs), three technologies were selected, namely: an onshore Oscillating Water Column (OWC) system, a device composed of onshore oscillating bodies (oscillating floaters), and a nearshore buoy. For the exploitation of offshore wind potential, on the other hand, the focus was on two floating wind turbine models (raft-buoy and spar-buoy, both having 6 MW installed capacity). Specifically, LCA was used to account for the potential environmental impact, in terms of Carbon Footprint (CF), of these Blue Energy devices throughout their lifecycle, from manufacturing of material components to decommissioning and end of life. The results showed that the manufacturing phase of the structural components has the greatest impact in terms of Carbon Footprint. Specifically, in the case of Wave Energy Converters systems, this phase covers 52% of total emissions, while for wind turbines it accounts for 75% for the raft-buoy model and nearly 70% for the spar-buoy model. The reason for such a result lies in the type and lifetime of the materials involved: concrete, steel and polyurethane for Wave Energy Converters systems and steel and fiberglass for raft-buoy and spar-buoy models. To compare the performance of the three different WECs and the two turbine models, the Carbon Intensity of Electricity (CIE) was evaluated by considering a range of electricity generation technologies, based on data to date available in the scientific literature. In addition, in the case of floating wind turbines, it was possible to use the potential productivity data from three different sites in the Mediterranean (Crete - Greece; Split - Croatia; and Larnaca - Cyprus). These primary data derived from the Transferring Labs organized and carried out during the BLUE DEAL project activities. Based on what is available in the literature, it was found that Wave Energy Converters can be promising solutions to capture wave energy, showing lower Carbon Intensity of Electricity values than fossil energy sources. However, technological improvements are needed to increase their efficiency and reach the performance of other renewable energy sources. The same is true for raft-buoy and spar-buoy models, as the results showed that the Carbon Intensity of Electricity of a single floating wind turbine is in line with values in other studies reported in the literature and with those for other renewable electricity generation systems (such as onshore wind and onshore photovoltaics). As part of the BLUE DEAL project and as a complement to the previously described analysis, in collaboration with the Department of Economics and Statistics, a statistical survey was conducted to detect perceptions and attitudes towards the possible implementation of Blue Energy technologies (including those under study in the LCA) in 12 different locations in the Mediterranean basin (Croatia, Greece, Albania, Malta, Cyprus, Spain, Italy, Slovenia). The scientific approach, underlying the analysis, served to assess the social dimension of sustainability. The survey results have shown that the majority of respondents are aware of climate change issues and believe that appropriate measures need to be taken to mitigate them. However, only a small percentage of respondents are aware of Blue Energy, highlighting the need for further research and development to apply these technologies on a commercial scale. In terms of hypotheses for their installation in the communities surveyed, all the technologies presented in the questionnaire received strong support, particularly the Oscillating Water Column system, which was seen as the least invasive. On the other hand, in terms of the potential impacts of implementing these technologies, most respondents were concerned about the impact on fauna and flora. Finally, respondents were generally positive about the benefits of implementing such devices in the study areas in terms of creating new jobs, achieving energy independence and mitigating climate change. The scientific approach underpinning the analysis was used to assess the social dimension of sustainability, demonstrating the importance of involving stakeholders, local authorities and citizens at an early stage in participatory energy planning processes. Indeed, in the energy transition process, the social dimension is an essential and crucial aspect to be taken into account when designing sustainable development plans and policies. In conclusion, this research has shown how the use of two different methodologies (LCA and Cost-Benefit Analysis) and environmental sustainability indicators, together with social analysis tools, makes it possible to carry out an assessment capable of providing indications of real and lasting sustainability. Indeed, the integration of socio-environmental information with financial information, exploiting the complementarity of the methodologies, provided a global vision of the potential impact of the systems and processes studied.
2023
35
Bruno, M. (2023). Applicazione di metodologie e indicatori di sostenibilità ambientale per la valutazione di nuovi sistemi di produzione di energia da fonti rinnovabili [10.25434/bruno-morena_phd2023].
Bruno, Morena
File in questo prodotto:
File Dimensione Formato  
phd_unisi_093892.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 4.6 MB
Formato Adobe PDF
4.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1234974