For an autonomous vehicle it is essential to observe the ongoing dynamics of a scene and consequently predict imminent future scenarios to ensure safety to itself and others. This can be done using different sensors and modalities. In this paper we investigate the usage of optical flow for predicting future semantic segmentations. To do so we propose a model that forecasts flow fields autoregressively. Such predictions are then used to guide the inference of a learned warping function that moves instance segmentations on to future frames. Results on the Cityscapes dataset demonstrate the effectiveness of optical-flow methods.

Ciamarra, A., Becattini, F., Seidenari, L., Del Bimbo, A. (2022). Forecasting Future Instance Segmentation with Learned Optical Flow and Warping. In Image Analysis and Processing – ICIAP 2022 (pp.349-361). Cham : Springer [10.1007/978-3-031-06433-3_30].

Forecasting Future Instance Segmentation with Learned Optical Flow and Warping

Becattini F.;
2022-01-01

Abstract

For an autonomous vehicle it is essential to observe the ongoing dynamics of a scene and consequently predict imminent future scenarios to ensure safety to itself and others. This can be done using different sensors and modalities. In this paper we investigate the usage of optical flow for predicting future semantic segmentations. To do so we propose a model that forecasts flow fields autoregressively. Such predictions are then used to guide the inference of a learned warping function that moves instance segmentations on to future frames. Results on the Cityscapes dataset demonstrate the effectiveness of optical-flow methods.
2022
978-3-031-06432-6
978-3-031-06433-3
Ciamarra, A., Becattini, F., Seidenari, L., Del Bimbo, A. (2022). Forecasting Future Instance Segmentation with Learned Optical Flow and Warping. In Image Analysis and Processing – ICIAP 2022 (pp.349-361). Cham : Springer [10.1007/978-3-031-06433-3_30].
File in questo prodotto:
File Dimensione Formato  
978-3-031-06433-3_30.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.67 MB
Formato Adobe PDF
3.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1225615