The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes are able to detect gamma rays from the ground with energies beyond several tens of GeV emitted by the most energetic known objects, including Pulsar Wind Nebulae, Active Galactic Nuclei, and Gamma-Ray Bursts. Gamma rays and cosmic rays are detected by imaging the Cherenkov light produced by the charged superluminal leptons in the extended air shower originated when the primary particle interacts with the atmosphere. These Cherenkov flashes brighten the night sky for short times in the nanosecond scale. From the image topology and other observables, gamma rays can be separated from the unwanted cosmic rays, and thereafter incoming direction and energy of the primary gamma rays can be reconstructed. The standard algorithm in MAGIC data analysis for the gamma/hadron separation is the so-called Random Forest, that works on a parametrization of the stereo events based on the shower image parameters. Until a few years ago, these algorithms were limited by the computational resources but modern devices, such as GPUs, make it possible to work efficiently on the pixel maps information. Most neural network applications in the field perform the training on Monte Carlo simulated data for the gamma-ray sample. This choice is prone to systematics arising from discrepancies between observational data and simulations. Instead, in this thesis I trained a known neural network scheme with observation data from a giant flare of the bright TeV blazar Mrk421 observed by MAGIC in 2013. With this method for gamma/hadron separation, the preliminary results compete with the standard MAGIC analysis based on Random Forest classification, which also shows the potential of this approach for further improvement. In this thesis first an introduction to the High-Energy Astrophysics and the Astroparticle physics is given. The cosmic messengers are briefly reviewed, with a focus on the photons, then astronomical sources of γ rays are described, followed by a description of the detection techniques. In the second chapter the MAGIC analysis pipeline starting from the low level data acquisition to the high level data is described. The MAGIC Instrument Response Functions are detailed. Finally, the most important astronomical sources used in the standard MAGIC analysis are listed. The third chapter is devoted to Deep Neural Network techniques, starting from an historical Artificial Intelligence excursus followed by a Machine Learning description. The basic principles behind an Artificial Neural Network and the Convolutional Neural Network used for this work are explained. Last chapter describes my original work, showing in detail the data selection/manipulation for training the Inception Resnet V2 Convolutional Neural Network and the preliminary results obtained from four test sources.

Truzzi, S. (2022). Event classification in MAGIC through Convolutional Neural Networks [10.25434/stefano-truzzi_phd2022].

Event classification in MAGIC through Convolutional Neural Networks

Stefano Truzzi
2022-01-01

Abstract

The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes are able to detect gamma rays from the ground with energies beyond several tens of GeV emitted by the most energetic known objects, including Pulsar Wind Nebulae, Active Galactic Nuclei, and Gamma-Ray Bursts. Gamma rays and cosmic rays are detected by imaging the Cherenkov light produced by the charged superluminal leptons in the extended air shower originated when the primary particle interacts with the atmosphere. These Cherenkov flashes brighten the night sky for short times in the nanosecond scale. From the image topology and other observables, gamma rays can be separated from the unwanted cosmic rays, and thereafter incoming direction and energy of the primary gamma rays can be reconstructed. The standard algorithm in MAGIC data analysis for the gamma/hadron separation is the so-called Random Forest, that works on a parametrization of the stereo events based on the shower image parameters. Until a few years ago, these algorithms were limited by the computational resources but modern devices, such as GPUs, make it possible to work efficiently on the pixel maps information. Most neural network applications in the field perform the training on Monte Carlo simulated data for the gamma-ray sample. This choice is prone to systematics arising from discrepancies between observational data and simulations. Instead, in this thesis I trained a known neural network scheme with observation data from a giant flare of the bright TeV blazar Mrk421 observed by MAGIC in 2013. With this method for gamma/hadron separation, the preliminary results compete with the standard MAGIC analysis based on Random Forest classification, which also shows the potential of this approach for further improvement. In this thesis first an introduction to the High-Energy Astrophysics and the Astroparticle physics is given. The cosmic messengers are briefly reviewed, with a focus on the photons, then astronomical sources of γ rays are described, followed by a description of the detection techniques. In the second chapter the MAGIC analysis pipeline starting from the low level data acquisition to the high level data is described. The MAGIC Instrument Response Functions are detailed. Finally, the most important astronomical sources used in the standard MAGIC analysis are listed. The third chapter is devoted to Deep Neural Network techniques, starting from an historical Artificial Intelligence excursus followed by a Machine Learning description. The basic principles behind an Artificial Neural Network and the Convolutional Neural Network used for this work are explained. Last chapter describes my original work, showing in detail the data selection/manipulation for training the Inception Resnet V2 Convolutional Neural Network and the preliminary results obtained from four test sources.
2022
BONNOLI, GIACOMO
CAPPUCCIO, ROBERTO
Truzzi, S. (2022). Event classification in MAGIC through Convolutional Neural Networks [10.25434/stefano-truzzi_phd2022].
Truzzi, Stefano
File in questo prodotto:
File Dimensione Formato  
phd_unisi_086881.pdf

accesso aperto

Descrizione: Event classification in MAGIC through Convolutional Neural Networks. Tesi di dottorato di Stefano Truzzi
Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 10.79 MB
Formato Adobe PDF
10.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1216295