When working on advanced research topics in geosciences, one must often deal with small yields and cryptocrystalline polyphasic samples. Conventional optical and X-ray crystallographic tools may not be sufficient for the proper characterization of these samples. The development of efficient probes able to investigate the nanoworld becomes therefore crucial for pushing forward our understanding about the geochemical and mineralogical processes that regulate Earth and extraterrestrial environments. In the last ten years, electron diffraction (ED) evolved from a qualitative method restricted to few dedicated TEM users, to a robust protocol for phase identification and abinitio structure determination [1]. Such change has been mostly propelled by the development of routines for 3D data collection. This methodology is in principle equivalent to single-crystal X-ray diffraction, but allows sampling crystals of few tens on nanometers. We will show here some examples of recent applications of ED in geosciences, namely how to achieve an easy and relatively fast characterization of minor and cryptocrystalline phases in natural and experimental samples. We were able identify and characterize modulated phases able to carry hydrogen at upper-mantle conditions, to follow aragonite growth from the first nucleation seeds [2] and to identify mineralogical phases and polytypes in non-equilibrated extraterrestrial samples and in impact rocks [3].

Mugnaioli, E., Gemmi, M., Campanale, F., Folco, L., Németh, P., Pignatelli, I. (2019). 3D electron diffraction in nano-geology: present and perspectives. In Goldschmidt Conference 2019.

3D electron diffraction in nano-geology: present and perspectives

Mugnaioli E.
;
2019-01-01

Abstract

When working on advanced research topics in geosciences, one must often deal with small yields and cryptocrystalline polyphasic samples. Conventional optical and X-ray crystallographic tools may not be sufficient for the proper characterization of these samples. The development of efficient probes able to investigate the nanoworld becomes therefore crucial for pushing forward our understanding about the geochemical and mineralogical processes that regulate Earth and extraterrestrial environments. In the last ten years, electron diffraction (ED) evolved from a qualitative method restricted to few dedicated TEM users, to a robust protocol for phase identification and abinitio structure determination [1]. Such change has been mostly propelled by the development of routines for 3D data collection. This methodology is in principle equivalent to single-crystal X-ray diffraction, but allows sampling crystals of few tens on nanometers. We will show here some examples of recent applications of ED in geosciences, namely how to achieve an easy and relatively fast characterization of minor and cryptocrystalline phases in natural and experimental samples. We were able identify and characterize modulated phases able to carry hydrogen at upper-mantle conditions, to follow aragonite growth from the first nucleation seeds [2] and to identify mineralogical phases and polytypes in non-equilibrated extraterrestrial samples and in impact rocks [3].
2019
Mugnaioli, E., Gemmi, M., Campanale, F., Folco, L., Németh, P., Pignatelli, I. (2019). 3D electron diffraction in nano-geology: present and perspectives. In Goldschmidt Conference 2019.
File in questo prodotto:
File Dimensione Formato  
mugnaioligold2019.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 198.29 kB
Formato Adobe PDF
198.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1118074