The electrical grid can no longer be considered a unidirectional means of distributing energy from conventional plants to the final users, but a Smart Grid, where strong interaction between producers and users takes place. In this context, the importance of independent renewable generation is constantly increasing, and new tools are needed in order to reliably manage conventional power plant operation, grid balancing, real-time unit dispatching, demand constraints and energy market requirements. This dissertation is focused on two aspects of this general problem: cost-optimal management of smart buildings in a Demand-Response framework, and estimation of photovoltaic generation forecasting models. In the first part of this thesis a novel Model Predictive Control approach for integrated management of HVAC, electrical and thermal storage, and photovoltaic generation in building is presented. The proposed methodology also considers participation of the building in a Demand-Response program, which allows the consumer to become an active player in the electricity system. The related optimization problems turn out to be computationally appealing, even uncertainty sources is also addressed by means of a two-step procedure. The second part deals with the problem of estimating photovoltaic generation forecasting models in scenarios where measurements of meteorological variables (i.e., solar irradiance and temperature) at the plant site are not available. This scenario is relevant to electricity network operation, when a large number of photovoltaic plants are deployed in the grid. In particular, two methods have been developed. The first approach makes use of raw cloud cover data provided by a weather service combined with power generation measurements to estimate the parameters of a novel class of models. The second approach is based on a set of tests performed on the generated power time series aimed at detecting data portions that were generated under clear sky conditions. These data are then used for fit the parameters of the PVUSA model to the theoretical clear sky irradiance. All the methods covered in this thesis have been extensively validated either using industry-standard simulation frameworks or via experiments performed on real data.
Pepe, D. (2019). New techniques for solar power forecasting and building energy management.
New techniques for solar power forecasting and building energy management
Pepe D
2019-01-01
Abstract
The electrical grid can no longer be considered a unidirectional means of distributing energy from conventional plants to the final users, but a Smart Grid, where strong interaction between producers and users takes place. In this context, the importance of independent renewable generation is constantly increasing, and new tools are needed in order to reliably manage conventional power plant operation, grid balancing, real-time unit dispatching, demand constraints and energy market requirements. This dissertation is focused on two aspects of this general problem: cost-optimal management of smart buildings in a Demand-Response framework, and estimation of photovoltaic generation forecasting models. In the first part of this thesis a novel Model Predictive Control approach for integrated management of HVAC, electrical and thermal storage, and photovoltaic generation in building is presented. The proposed methodology also considers participation of the building in a Demand-Response program, which allows the consumer to become an active player in the electricity system. The related optimization problems turn out to be computationally appealing, even uncertainty sources is also addressed by means of a two-step procedure. The second part deals with the problem of estimating photovoltaic generation forecasting models in scenarios where measurements of meteorological variables (i.e., solar irradiance and temperature) at the plant site are not available. This scenario is relevant to electricity network operation, when a large number of photovoltaic plants are deployed in the grid. In particular, two methods have been developed. The first approach makes use of raw cloud cover data provided by a weather service combined with power generation measurements to estimate the parameters of a novel class of models. The second approach is based on a set of tests performed on the generated power time series aimed at detecting data portions that were generated under clear sky conditions. These data are then used for fit the parameters of the PVUSA model to the theoretical clear sky irradiance. All the methods covered in this thesis have been extensively validated either using industry-standard simulation frameworks or via experiments performed on real data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1072873
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo