The main goal of this Thesis is the design and development of Radio-Frequency (RF) coils for sodium Magnetic Resonance Imaging (MRI) at Ultra High Field (UHF). The advantage of using UHF MR scanners is due to the possibility to achieve improved Signal-to-Noise-Ratio (SNR) and spatial resolution. These characteristics are fundamental in case of imaging with nuclei different from proton, which provide an intrinsically lower signal because of their lower in-vivo concentration and lower gyromagnetic ratio. Moreover, the overlap between sodium and proton images allows the accurate localization of regions with an anomalous sodium concentration, thanks to the anatomically more detailed proton images. For this reason, in case of imaging with non-proton nuclei, Dual-Tuned (DT) coils are preferable, since they allow the signal acquisition in a fixed spatial orientation of the subject, thus removing the need of patient’s repositioning between two consecutive acquisitions with two different RF coil resonating at the two Larmor frequencies of proton and sodium, respectively. Therefore, with a DT coil, automatically co-registered images can be obtained. The cost to pay is an increase in the design and development complexity with respect to a standard RF coil. In this Thesis, RF coils prototypes for sodium imaging (Larmor frequency ≃ 79 MHz) have been designed and developed for two different applications: human knee and human head imaging. Concerning the knee imaging, both surface coils, suitable for the signal reception, and volume coils, suitable for the sample excitation, have been designed and developed. All surface coils for knee imaging are dual-tuned. The first DT-RF coil prototype has been developed to study and characterize the issues related to the coupling between the two resonant structures, which usually compose a DT coil. New decoupling strategies have been proposed and developed as an alternative to the standard decoupling by using trap circuits, including models based on PIN diodes and Micro-Electro-Mechanical System (MEMS) switches. The volume RF coil for the knee imaging, built to be sensitive to the sodium signal only, has been designed according to the birdcage model. It has been developed to face with potential issues related to sodium volume coil interfacing with the MR system and signal acquisition before starting the construction of DT volume coils. Concerning the head imaging, an imbricated DT-RF coil, consisting of two concentrically placed birdcages, and the related electronic interface needed to connect the coil to the MR system, have been developed. Finally, an unconventional DT volume coil model (four-ring model), consisting of two birdcage-like resonant structures arranged on the same cylindrical surface and tuned at the two frequencies of interest, has been taken into account. The four-ring model has been optimized though electromagnetic simulations, with the main purpose of increasing the magnetic field homogeneity at the proton Larmor frequency at 7 T (≃ 300 MHz), and finally compared with the imbricated model.

Maggiorelli, F. (2019). Design and Development of Radio Frequency Coils for Sodium Magnetic Resonance Imaging at 7 T.

Design and Development of Radio Frequency Coils for Sodium Magnetic Resonance Imaging at 7 T

MAGGIORELLI, FRANCESCA
2019-01-01

Abstract

The main goal of this Thesis is the design and development of Radio-Frequency (RF) coils for sodium Magnetic Resonance Imaging (MRI) at Ultra High Field (UHF). The advantage of using UHF MR scanners is due to the possibility to achieve improved Signal-to-Noise-Ratio (SNR) and spatial resolution. These characteristics are fundamental in case of imaging with nuclei different from proton, which provide an intrinsically lower signal because of their lower in-vivo concentration and lower gyromagnetic ratio. Moreover, the overlap between sodium and proton images allows the accurate localization of regions with an anomalous sodium concentration, thanks to the anatomically more detailed proton images. For this reason, in case of imaging with non-proton nuclei, Dual-Tuned (DT) coils are preferable, since they allow the signal acquisition in a fixed spatial orientation of the subject, thus removing the need of patient’s repositioning between two consecutive acquisitions with two different RF coil resonating at the two Larmor frequencies of proton and sodium, respectively. Therefore, with a DT coil, automatically co-registered images can be obtained. The cost to pay is an increase in the design and development complexity with respect to a standard RF coil. In this Thesis, RF coils prototypes for sodium imaging (Larmor frequency ≃ 79 MHz) have been designed and developed for two different applications: human knee and human head imaging. Concerning the knee imaging, both surface coils, suitable for the signal reception, and volume coils, suitable for the sample excitation, have been designed and developed. All surface coils for knee imaging are dual-tuned. The first DT-RF coil prototype has been developed to study and characterize the issues related to the coupling between the two resonant structures, which usually compose a DT coil. New decoupling strategies have been proposed and developed as an alternative to the standard decoupling by using trap circuits, including models based on PIN diodes and Micro-Electro-Mechanical System (MEMS) switches. The volume RF coil for the knee imaging, built to be sensitive to the sodium signal only, has been designed according to the birdcage model. It has been developed to face with potential issues related to sodium volume coil interfacing with the MR system and signal acquisition before starting the construction of DT volume coils. Concerning the head imaging, an imbricated DT-RF coil, consisting of two concentrically placed birdcages, and the related electronic interface needed to connect the coil to the MR system, have been developed. Finally, an unconventional DT volume coil model (four-ring model), consisting of two birdcage-like resonant structures arranged on the same cylindrical surface and tuned at the two frequencies of interest, has been taken into account. The four-ring model has been optimized though electromagnetic simulations, with the main purpose of increasing the magnetic field homogeneity at the proton Larmor frequency at 7 T (≃ 300 MHz), and finally compared with the imbricated model.
2019
Maggiorelli, F. (2019). Design and Development of Radio Frequency Coils for Sodium Magnetic Resonance Imaging at 7 T.
Maggiorelli, Francesca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1066803
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo