The direct observation of high-energy cosmic rays, up to the PeV region, will depend on highly performing calorimeters, and the physics performance will be primarily determined by their acceptance and energy resolution.Thus, it is fundamental to optimize their geometrical design, granularity, and absorption depth, with respect to the total mass of the apparatus, probably the most important constraints for a space mission. Furthermore, a calorimeter based space experiment can provide not only flux measurements but also energy spectra and particle identification to overcome some of the limitations of ground-based experiments. CaloCube is a homogeneous calorimeter whose basic geometry is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic scintillating crystals. A prototype, instrumented with CsI(Tl) cubic crystals, has been constructed and tested with particle beams.

Bigongiari, G. (2017). Calocube: A new homogeneous calorimeter with high-granularity for precise measurements of high-energy cosmic rays in space. In Proceedings of Science. Sissa Medialab Srl.

Calocube: A new homogeneous calorimeter with high-granularity for precise measurements of high-energy cosmic rays in space

Bigongiari, Gabriele
Membro del Collaboration Group
2017-01-01

Abstract

The direct observation of high-energy cosmic rays, up to the PeV region, will depend on highly performing calorimeters, and the physics performance will be primarily determined by their acceptance and energy resolution.Thus, it is fundamental to optimize their geometrical design, granularity, and absorption depth, with respect to the total mass of the apparatus, probably the most important constraints for a space mission. Furthermore, a calorimeter based space experiment can provide not only flux measurements but also energy spectra and particle identification to overcome some of the limitations of ground-based experiments. CaloCube is a homogeneous calorimeter whose basic geometry is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic scintillating crystals. A prototype, instrumented with CsI(Tl) cubic crystals, has been constructed and tested with particle beams.
2017
Bigongiari, G. (2017). Calocube: A new homogeneous calorimeter with high-granularity for precise measurements of high-energy cosmic rays in space. In Proceedings of Science. Sissa Medialab Srl.
File in questo prodotto:
File Dimensione Formato  
EPS-HEP2017_481.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1065949