The traditional approach to poverty measurement utilises only monetary variables as indicators of individuals’ intensity of the state of deprivation, causing measurement errors of the phenomenon under investigation. Moreover, when adopted in a longitudinal context, this approach tends to overestimate transition poverty. Since poverty is not directly observable, a latent definition can be adopted: in such a conception is possible to use Markov chain models in their latent acceptation. This chapter proposes to use Latent class Markov models which allow taking into account more observed (manifest) variables. We define those variables via monetary and non-monetary fuzzy indicators.

Marano, G., Betti, G., Gagliardi, F. (2015). Latent Class Markov Models for Measuring Longitudinal Fuzzy Poverty. In B.E. Carpita M. (a cura di), Advances in Latent Variables: Methods, models and applications (pp. 73-81). New York : Springer [10.1007/10104_2014_4].

Latent Class Markov Models for Measuring Longitudinal Fuzzy Poverty

Betti Gianni
Membro del Collaboration Group
;
Gagliardi Francesca
Membro del Collaboration Group
2015-01-01

Abstract

The traditional approach to poverty measurement utilises only monetary variables as indicators of individuals’ intensity of the state of deprivation, causing measurement errors of the phenomenon under investigation. Moreover, when adopted in a longitudinal context, this approach tends to overestimate transition poverty. Since poverty is not directly observable, a latent definition can be adopted: in such a conception is possible to use Markov chain models in their latent acceptation. This chapter proposes to use Latent class Markov models which allow taking into account more observed (manifest) variables. We define those variables via monetary and non-monetary fuzzy indicators.
2015
978-3-319-02967-2
Marano, G., Betti, G., Gagliardi, F. (2015). Latent Class Markov Models for Measuring Longitudinal Fuzzy Poverty. In B.E. Carpita M. (a cura di), Advances in Latent Variables: Methods, models and applications (pp. 73-81). New York : Springer [10.1007/10104_2014_4].
File in questo prodotto:
File Dimensione Formato  
Estratto GMarano_GBetti_FGagliardi.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 132.49 kB
Formato Adobe PDF
132.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1042711