This paper addresses the problem of exploiting very high-resolution multifrequency SAR data collected by the COSMO-SkyMed and RADARSAT-2 missions to support risk monitoring and assessment in urban and suburban areas. The proposed approach aims at taking benefit from the synergy between the two SAR data sources to optimize the accuracy of thematic products of interest to risk monitoring. In particular, an unsupervised change detection approach is discussed, in which feature-level fusion is applied to a satellite image time series including both COSMO-SkyMed and RADARSAT-2 acquisitions to improve the detection results as compared to those generated through single-frequency processing.
Titolo: | Robust change detection from COSMO-SkyMed and RADARSAT-2 multitemporal images |
Autori: | |
Anno: | 2017 |
Citazione: | Garzelli, A., Moser, G., & Serpico, S.B. (2017). Robust change detection from COSMO-SkyMed and RADARSAT-2 multitemporal images. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp.5252-5255). Institute of Electrical and Electronics Engineers Inc.. |
Handle: | http://hdl.handle.net/11365/1033755 |
ISBN: | 9781509049516 |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11365/1033755
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.