A recent work [1] introduced a flux-charge analysis method (FCAM) to study the nonlinear dynamics and bifurcations of a large class of memristor circuits. FCAM relies on the use of Kirchhoff Flux and Charge Laws and constitutive relations of circuits elements in the flux-charge domain. In [1], the saddle-node bifurcations of equilibrium points in the simplest memristor circuit composed of an ideal flux-controlled memristor and a capacitor, were studied. This paper is devoted to analyze via FCAM more complex bifurcations, such as Hopf bifurcations and period-doubling bifurcations originating complex attractors, in higher-order memristor circuits. It is shown analytically and quantitatively how these bifurcations can be induced by varying the initial conditions of dynamic circuit elements in the voltage-current domain while assuming that circuits parameters are held fixed. Such bifurcations are known in the literature as bifurcations without parameters.

Corinto, F., Forti, M. (2017). Nonlinear dynamics of memristor oscillators via the flux-charge analysis method. In Proceedings - IEEE International Symposium on Circuits and Systems (pp.1-4). Baltimore : Institute of Electrical and Electronics Engineers Inc. [10.1109/ISCAS.2017.8050989].

Nonlinear dynamics of memristor oscillators via the flux-charge analysis method

Forti, Mauro
2017-01-01

Abstract

A recent work [1] introduced a flux-charge analysis method (FCAM) to study the nonlinear dynamics and bifurcations of a large class of memristor circuits. FCAM relies on the use of Kirchhoff Flux and Charge Laws and constitutive relations of circuits elements in the flux-charge domain. In [1], the saddle-node bifurcations of equilibrium points in the simplest memristor circuit composed of an ideal flux-controlled memristor and a capacitor, were studied. This paper is devoted to analyze via FCAM more complex bifurcations, such as Hopf bifurcations and period-doubling bifurcations originating complex attractors, in higher-order memristor circuits. It is shown analytically and quantitatively how these bifurcations can be induced by varying the initial conditions of dynamic circuit elements in the voltage-current domain while assuming that circuits parameters are held fixed. Such bifurcations are known in the literature as bifurcations without parameters.
2017
9781467368537
Corinto, F., Forti, M. (2017). Nonlinear dynamics of memristor oscillators via the flux-charge analysis method. In Proceedings - IEEE International Symposium on Circuits and Systems (pp.1-4). Baltimore : Institute of Electrical and Electronics Engineers Inc. [10.1109/ISCAS.2017.8050989].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1033493