We study the asymptotic analysis of a singularly perturbed weakly parabolic system of m- equations of anisotropic reaction-diffusion type. Our main result formally shows that solutions to the system approximate a geometric motion of a hypersurface by anisotropic mean curvature. The anisotropy, supposed to be uniformly convex, is explicit and turns out to be the dual of the star-shaped combination of the m original anisotropies.
Amato, S., Bellettini, G., Paolini, M. (2013). The nonlinear multidomain model: a new formal asymptotic analysis. In Geometric Partial DifferentialEquations, Proceedings (pp.33-72). Pisa : EDIZIONI DELLA NORMALE [10.1007/978-88-7642-473-1_2].
The nonlinear multidomain model: a new formal asymptotic analysis
Bellettini, Giovanni;
2013-01-01
Abstract
We study the asymptotic analysis of a singularly perturbed weakly parabolic system of m- equations of anisotropic reaction-diffusion type. Our main result formally shows that solutions to the system approximate a geometric motion of a hypersurface by anisotropic mean curvature. The anisotropy, supposed to be uniformly convex, is explicit and turns out to be the dual of the star-shaped combination of the m original anisotropies.File | Dimensione | Formato | |
---|---|---|---|
2013_Amato_Bellettini_Paolini_Proc_Centro_DeGiorgi_completo.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
9.62 MB
Formato
Adobe PDF
|
9.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1017528