The first part of this paper contains an overview of the least squares method applied to various problems in ordinary and partial differential equations. In particular, we discuss various applications to the homogenization of transport equations, to the characterization of entropy solutions to scalar conservation laws and to the asymptotic behaviour of the action functional obtained through the reaction-diffusion approximation of mean curvature flow. In the last part of the paper we introduce and discuss the related problem of the quasi-potential for scalar conservation laws.
Bellettini, G., Caselli, F., Mariani, M. (2009). Some applications of the least squares method to differential equations. In Singularities in Nonlinear Evolution Phenomena and Applications (pp.59-87). PISA : Edizioni della Normale.
Some applications of the least squares method to differential equations
Bellettini, Giovanni;
2009-01-01
Abstract
The first part of this paper contains an overview of the least squares method applied to various problems in ordinary and partial differential equations. In particular, we discuss various applications to the homogenization of transport equations, to the characterization of entropy solutions to scalar conservation laws and to the asymptotic behaviour of the action functional obtained through the reaction-diffusion approximation of mean curvature flow. In the last part of the paper we introduce and discuss the related problem of the quasi-potential for scalar conservation laws.File | Dimensione | Formato | |
---|---|---|---|
2009_Bellettini_Caselli_Mariani_Centro_DeGiorgi-1-15.pdf
non disponibili
Descrizione: p. 1-15
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
8.67 MB
Formato
Adobe PDF
|
8.67 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2009_Bellettini_Caselli_Mariani_Centro_DeGiorgi-16-31.pdf
non disponibili
Descrizione: p. 16-31
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
9.51 MB
Formato
Adobe PDF
|
9.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1017520