We investigate differences in the elementary theories of Rogers semilattices of arithmetical numberings, depending on structural invariants of the given families of arithmetical sets. It is shown that at any fixed level of the arithmetical hierarchy there exist infinitely many families with pairwise elementary different Rogers semilattices.

Badaev, S., Goncharov, S., & Sorbi, A. (2003). Elementary properties of Rogers semilattices of arithmetical numberings. In Proceedings of the 7th and 8th Asian Logic Conferences (pp. 1-10). SINGAPORE : World Scientific.

Elementary properties of Rogers semilattices of arithmetical numberings

SORBI, ANDREA
2003

Abstract

We investigate differences in the elementary theories of Rogers semilattices of arithmetical numberings, depending on structural invariants of the given families of arithmetical sets. It is shown that at any fixed level of the arithmetical hierarchy there exist infinitely many families with pairwise elementary different Rogers semilattices.
9812382615
File in questo prodotto:
File Dimensione Formato  
el-properties-asian-log-coll.pdf

non disponibili

Descrizione: Articolo unico
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 408.75 kB
Formato Adobe PDF
408.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/389476