We investigate differences in the elementary theories of Rogers semilattices of arithmetical numberings, depending on structural invariants of the given families of arithmetical sets. It is shown that at any fixed level of the arithmetical hierarchy there exist infinitely many families with pairwise elementary different Rogers semilattices.
Badaev, S., Goncharov, S., Sorbi, A. (2003). Elementary properties of Rogers semilattices of arithmetical numberings. In Proceedings of the 7th and 8th Asian Logic Conferences (pp. 1-10). SINGAPORE : World Scientific [10.1142/9789812705815_0001].
Elementary properties of Rogers semilattices of arithmetical numberings
SORBI, ANDREA
2003-01-01
Abstract
We investigate differences in the elementary theories of Rogers semilattices of arithmetical numberings, depending on structural invariants of the given families of arithmetical sets. It is shown that at any fixed level of the arithmetical hierarchy there exist infinitely many families with pairwise elementary different Rogers semilattices.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
el-properties-asian-log-coll.pdf
non disponibili
Descrizione: Articolo unico
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
408.75 kB
Formato
Adobe PDF
|
408.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/389476