A c.U*-geometry is a geometry over the diagram c.L*, the point residues of which are finite dual unitals. Only one flag-transitive example is known. Its full automorphism group is Aut(J(2)), but J(2) also acts flag-transitively on it. We shall prove that this geometry is indeed the unique flag-transitive c.U*-geometry, thus obtaining a new geometric characterization of the Hall-Janko group J(2).

Huybrechts, C., Pasini, A. (1998). A characterization of the Hall-Janko group J2 by a c.L*-geometry. In Groups and Geometries (pp. 91-106). BASEL : Birkhauser.

A characterization of the Hall-Janko group J2 by a c.L*-geometry

PASINI A.
1998-01-01

Abstract

A c.U*-geometry is a geometry over the diagram c.L*, the point residues of which are finite dual unitals. Only one flag-transitive example is known. Its full automorphism group is Aut(J(2)), but J(2) also acts flag-transitively on it. We shall prove that this geometry is indeed the unique flag-transitive c.U*-geometry, thus obtaining a new geometric characterization of the Hall-Janko group J(2).
1998
0817658815
3764358815
Huybrechts, C., Pasini, A. (1998). A characterization of the Hall-Janko group J2 by a c.L*-geometry. In Groups and Geometries (pp. 91-106). BASEL : Birkhauser.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/13440
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo