We study Waring rank decompositions for cubic forms of rank n + 2 in n + 1 variables. In this setting, we prove that if a concise form has more than one non-redundant decomposition of length n+2, then all such decompositions share at least n−3 elements, and the remaining elements lie in a special configuration. Following this result, we give a detailed description of the (n+2)-th Terracini locus of the third Veronese embedding of n-dimensional projective space.
Chiantini, L., Gesmundo, F. (2024). Decompositions and Terracini loci of cubic forms of low rank. In A. Iarrobino, P. Macias Marques, M. E. Rossi, J. Vallès (a cura di), Deformation of Artinian Algebras and Jordan Type (pp. 139-155). American Mathematical Society [10.1090/conm/805/16131].
Decompositions and Terracini loci of cubic forms of low rank
Chiantini LucaMembro del Collaboration Group
;
2024-01-01
Abstract
We study Waring rank decompositions for cubic forms of rank n + 2 in n + 1 variables. In this setting, we prove that if a concise form has more than one non-redundant decomposition of length n+2, then all such decompositions share at least n−3 elements, and the remaining elements lie in a special configuration. Following this result, we give a detailed description of the (n+2)-th Terracini locus of the third Veronese embedding of n-dimensional projective space.File | Dimensione | Formato | |
---|---|---|---|
2024.CG_Decomp.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
288.84 kB
Formato
Adobe PDF
|
288.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1285241