Personalized accelerated crosslinking nomograms for the management of corneal ectasia were conceived after comparative analysis of demarcation lines and cell viability observed after customized accelerated epithelium-off crosslinking CXL treatments by spectral domain corneal OCT and scanning laser in vivo confocal microscopy matching all the clinical and instrumental data with mathematical models. Accelerated high-fluence Topography-guided CXL at 30 mW/cm2 UV-Power and Accelerated epithelium-off CXL with 9 and 15 mW/cm2 UV-A power with standardized Fluence of 5.4 J/cm2 were safe and effective demostrating a keratocytes apoptosis and demarcation line depth between 280 and 340 μm. The 30 mW ACXL showed a penetration with continuous and pulsed light between 150 and 200 μm. No endothelial damage was reported in any case. In vivo morphological studies demonstrated that Accelerated CXL allow a pachymetry-guided cutomization of CXL maintainig the standard Fluence of 5.4 J/cm2 and a total treatment time under 20 min. Moreover a pachymetry-guided ACXL nomogram (M nomogram) developed by Mazzotta C and Friedman M matching the physical and mathematical calculations with the miscostructural IVCM and OCT observations of demarcation lines depths allow an efficacous CXL management of primary and iatrogenic ectatic corneas also allowing a safe management of thin ectatic corneas.

Mazzotta, C., Rechichi, M., Ferrise, M. (2018). Customized corneal cross-linking. In A. Barbara (a cura di), Controversies in the management of keratoconus (pp. 117-144). Cham : Springer International Publishing [10.1007/978-3-319-98032-4_10].

Customized corneal cross-linking

Mazzotta C.;
2018-01-01

Abstract

Personalized accelerated crosslinking nomograms for the management of corneal ectasia were conceived after comparative analysis of demarcation lines and cell viability observed after customized accelerated epithelium-off crosslinking CXL treatments by spectral domain corneal OCT and scanning laser in vivo confocal microscopy matching all the clinical and instrumental data with mathematical models. Accelerated high-fluence Topography-guided CXL at 30 mW/cm2 UV-Power and Accelerated epithelium-off CXL with 9 and 15 mW/cm2 UV-A power with standardized Fluence of 5.4 J/cm2 were safe and effective demostrating a keratocytes apoptosis and demarcation line depth between 280 and 340 μm. The 30 mW ACXL showed a penetration with continuous and pulsed light between 150 and 200 μm. No endothelial damage was reported in any case. In vivo morphological studies demonstrated that Accelerated CXL allow a pachymetry-guided cutomization of CXL maintainig the standard Fluence of 5.4 J/cm2 and a total treatment time under 20 min. Moreover a pachymetry-guided ACXL nomogram (M nomogram) developed by Mazzotta C and Friedman M matching the physical and mathematical calculations with the miscostructural IVCM and OCT observations of demarcation lines depths allow an efficacous CXL management of primary and iatrogenic ectatic corneas also allowing a safe management of thin ectatic corneas.
2018
978-3-319-98031-7
978-3-319-98032-4
Mazzotta, C., Rechichi, M., Ferrise, M. (2018). Customized corneal cross-linking. In A. Barbara (a cura di), Controversies in the management of keratoconus (pp. 117-144). Cham : Springer International Publishing [10.1007/978-3-319-98032-4_10].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1179093