Traditional supervised approaches realize an inductive learning process: A model is learnt from labeled examples, in order to predict the labels of unseen examples. On the other hand, transductive learning is less ambitious. It can be thought as a procedure to learn the labels on a training set, while, simultaneously, trying to guess the best labels on the test set. Intuitively, transductive learning has the advantage of being able to directly use training patterns while deciding on a test pattern. Thus, transductive learning faces a simpler problem with respect to inductive learning. In this paper, we propose a preliminary comparative study between a simple transductive model and a pure inductive model, where the learning architectures are based on feedforward neural networks. The goal is to understand how transductive learning affects the complexity (measured by the number of hidden neurons) of the exploited neural networks. Preliminary experimental results are reported on the classical two spirals problem.

Bianchini, M., Belahcen, A., & Scarselli, F. (2016). A comparative study of inductive and transductive learning with feedforward neural networks. In AI*IA 2016: ADVANCES IN ARTIFICIAL INTELLIGENCE (pp. 283-293). Cham : Springer Verlag [10.1007/978-3-319-49130-1_21].

A comparative study of inductive and transductive learning with feedforward neural networks

Bianchini, Monica;Scarselli, Franco
2016

Abstract

Traditional supervised approaches realize an inductive learning process: A model is learnt from labeled examples, in order to predict the labels of unseen examples. On the other hand, transductive learning is less ambitious. It can be thought as a procedure to learn the labels on a training set, while, simultaneously, trying to guess the best labels on the test set. Intuitively, transductive learning has the advantage of being able to directly use training patterns while deciding on a test pattern. Thus, transductive learning faces a simpler problem with respect to inductive learning. In this paper, we propose a preliminary comparative study between a simple transductive model and a pure inductive model, where the learning architectures are based on feedforward neural networks. The goal is to understand how transductive learning affects the complexity (measured by the number of hidden neurons) of the exploited neural networks. Preliminary experimental results are reported on the classical two spirals problem.
9783319491295
978-3-319-49130-1
Bianchini, M., Belahcen, A., & Scarselli, F. (2016). A comparative study of inductive and transductive learning with feedforward neural networks. In AI*IA 2016: ADVANCES IN ARTIFICIAL INTELLIGENCE (pp. 283-293). Cham : Springer Verlag [10.1007/978-3-319-49130-1_21].
File in questo prodotto:
File Dimensione Formato  
Bianchini.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 82.75 kB
Formato Adobe PDF
82.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/1006509