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By and large, the interpretation of learning as a computational process taking place in 
both humans and machines is primarily provided in the framework of statistics. In this 
paper, we propose a radically different perspective in which the emergence of learning 
is regarded as the outcome of laws of nature that govern the interactions of intelligent 
agents with their own environment. We introduce a natural learning theory based on the 
principle of least cognitive action, which is inspired to the related mechanical principle, and 
to the Hamiltonian framework for modeling the motion of particles. The introduction of 
the kinetic and of the potential energy leads to a surprisingly natural interpretation of 
learning as a dissipative process. The kinetic energy reflects the temporal variation of the 
synaptic connections, while the potential energy is a penalty that describes the degree 
of satisfaction of the environmental constraints. The theory gives a picture of learning 
in terms of the energy balancing mechanisms, where the novel notions of boundary and 
bartering energies are introduced. Finally, as an example of application of the theory, we 
show that the supervised machine learning scheme can be framed in the proposed theory 
and, in particular, we show that the Euler–Lagrange differential equations of learning 
collapse to the classic gradient algorithm on the supervised pairs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Machine Learning is at a lively crossroad of disciplines, where the exploration of neuroscience and cognitive psychol-
ogy meets computational models mostly based on statistical foundations. For these models to be realistic, one is typically 
concerned with the acquisition of learning skills on a sample of training data, that is sufficiently large to be consistent 
with a statistically relevant test set. However, in most challenging and interesting learning tasks taking place in humans, 
the underlying computational processes do not seem to offer such a neat identification of the training set. As time goes by, 
humans react surprisingly well to new stimuli, while keeping past acquired skills, which seems to be hard to reach with 
nowadays intelligent agents. This suggests us to look for alternative foundations of learning, which are not necessarily based 
on statistical models of the whole agent life.

In this paper, we investigate the emergence of learning as the outcome of laws of nature that govern the interactions of 
intelligent agents with their own environment, regardless of their nature. The underlying principle is that the acquisition of 
cognitive skills by learning obeys information-based laws on these interactions, which hold regardless of biology. In this new 
perspective, in particular, we introduce a natural learning theory aimed at discovering the fundamental temporally-embedded 
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mechanisms of environmental interaction. While the role of time has been quite relevant in machine learning (see e.g. the 
Hidden Markov Models), in some challenging problems, like computer vision, the temporal dimension seems to play quite a 
minor role. What could human vision had been in a world of visual information with shuffled frames? Any cognitive process 
aimed at extracting symbolic information from images that are not frames of a temporally coherent visual stream would 
have been extremely harder than in our visual experience [1]. More than looking for smart algorithmic solutions to deal 
with temporal coherence, in this paper we rely on the idea of regarding learning as a process which is deeply interwound 
with time, just like in most laws of nature.

In order to derive the laws of learning, we introduce the principle of least cognitive action, which is inspired to the related 
mechanical principle, and to the Hamiltonian framework for modeling the motion of particles. Unlike mechanics, however, 
the cognitive action that we define is in fact the objective to be minimized, more than a functional for which to discover 
a stationary point. In our learning framework, this duality is based on a proper introduction of the “kinetic” and of the 
“potential energy,” that leads to a surprisingly natural interpretation of learning as a dissipative process. The kinetic energy 
reflects the temporal variation of the synaptic connections, while the potential energy is a penalty that describes the degree 
of satisfaction of the environmental constraints. The theory gives a picture of learning in terms of the energy balancing 
mechanisms, where the novel notions of boundary and bartering energies are introduced. These new energies arise mostly 
to model complex environmental interactions of the agent, that are nicely captured by means of time-variant high-order 
differential operators. When pairing them with the novel notion of BG-bracket, we show how intelligent processes can be 
understood in terms of energy balance; learning turns out be a dissipative process which reduces the potential energy 
by moving the connection weights, thus producing a kinetic energy. However, the energy balancing does involve also the 
boundary and bartering energies. The former arises because of the energy exchange at the beginning and at the end of 
the temporal horizon, while the last one is deeply connected with the energy exchange during the agent’s life. It is worth 
mentioning that this energy balance, which has a nice qualitative interpretation, is in fact the formal outcome of the main 
theoretical results given in the paper. In particular, the proposed framework incorporates classic mechanics as a special 
case, while it opens the doors to in-depth analyses in any context in which there is an explicit temporal dependence in the 
Lagrangian of the system.

While the paper focuses on laws of learning that are independent of the nature of the intelligent agent, it is shown that 
these laws also offer a general framework to derive classic on-line machine learning algorithms. In particular, we show that 
the supervised machine learning scheme can be framed in the proposed theory, and that the Euler–Lagrange differential 
equations of learning derived in the paper do collapse to the classic gradient algorithm. Interestingly, the theory prescribes 
the time-variant learning rate, which arises from the given variational formulation.

The paper is organized as follows. In the next section, we introduce natural principles of learning and, in particular, 
the notion of cognitive action. Its minimization, which leads to the laws of learning, is described in Section 3. In Sec-
tion 4 we propose a dissipative Hamiltonian framework of learning, which, in Section 5, is completed by the analysis of 
the BG-brackets. Section 6 relies on the previous results to provide an interpretation of learning dynamics by means of 
energy balance. In Section 7, we show how the laws of learning can be converted to the gradient algorithm. Finally, some 
conclusions are drawn in Section 8.

2. Natural principles of learning

The notion of time is ubiquitous in laws of nature. Surprisingly enough, most studies on machine learning have relegated 
time to the related notion of iteration step.1 From one side the connection is sound, since it involves the computational 
effort, that is also observed in nature. From the other side, while time has a truly continuous nature, the time discretization 
typical in fields like computer vision seems to give up to the challenge of constructing a truly theory of learning. This paper 
presents an approach to learning that incorporates time in its truly continuous structure, so as the evolution of the weights 
of the neural synapses follows equations that resemble laws of physics. We consider environmental interactions that are 
modeled under the recently proposed framework of learning from constraints [2]. In particular, we focus attention on the 
case in which each constraint originates a loss function, that is expected to take on small values in case of soft-satisfaction. 
Interestingly, thanks to the adoption of the t-norm theory [3], loss functions can be constructed that can also represent the 
satisfaction of logic constraints.

A lot of emphasis in machine learning has been on supervised learning where we are given the collection L =
{(tκ , u(tκ )), sκ }κ∈N of supervised pairs (u(tκ ), sκ ) over the temporal sequence {tκ }κ∈N . At a given t , the pairs (u(tκ ), sk)

that have become available are denoted by �Lt := {κ ∈N : tκ ≤ t}. We assume that those data are learned by a feedforward 
neural network defined by the function

f (·, ·) : Rn ×R
d →R

D ,

so as the input u(t) is mapped to y(t) = f (w(t), u(t)). Classic supervised learning can be naturally modeled by introducing 
a loss function L(·, ·) : R2 → R along with the given training set L. Examples of different loss functions can be found 

1 This is often named “epoch.”
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Table 1
Links between the natural learning theory and classical mechanics.

Natural Learning Theory � Mechanics Remarks

wi � qi Weights are interpreted as generalized coordinates.
ẇi � q̇i Weights variations are interpreted as generalized velocities.
υi � pi The conjugate momentum to the weights is defined by using the machinery 

of Legendre transforms.
A[w] � S[q] The cognitive action is the dual of the action in mechanics.
F (t, w, ẇ) � L(t,q, q̇) The Lagrangian F tis associated with the classic Lagrangian L in mechanics.
H(t, w,υ) � H(t,q, p) When using w and υ , we can define the Hamiltonian, just like in mechanics.

in [4] (Ch. 3). A classic case is the one of quadratic loss, that is L(y, s) = 1
2 (y − s)2. Because of the variational formulation 

of learning that is given in this paper, it is convenient to associate L with the overall distributional loss

V (t, w) = 1

2
ψ(t)

∑
κ∈ �Lt

( f (w(t), u(t)) − sκ )2 · δ(t − tκ ).

Here, ψ(·) is referred to as the dissipation function, and it is assumed to be a positive and increasing monotonic function on 
its domain. A fundamental principle behind the emergence of learning, which will be fully gained in the remainder of the 
paper, is that it does require energy dissipation. In the Hamiltonian framework, the introduction of dissipation processes can 
be done in different ways. The idea of factorizing the potential, as well as the whole Lagrangian, by a temporally-growing ex-
ponential term is related to studies on dissipative Hamiltonian systems [5]. We regard w ∈R

n as the Lagrangian coordinates
of a virtual mechanical system. Throughout this paper, V (·, ·) is referred to as the potential energy of the system defined by 
Lagrangian coordinates w . In machine learning, we look for trajectories w(t) that possibly lead to configurations with small 
potential energy. Following the duality with mechanics, we also introduce the notion of kinetic energy. For reasons that will 
become clear in the remainder of the paper, we generalize the notion of velocity, Ti wi , where, for each fixed i, Ti is a time 
dependent linear differential operator of the form Ti

T i(t) =
�∑

j=0

αi, j(t)
d j

dt j
. (1)

Let mi > 0 be the mass of each particle (dual of connection weight) defined by the position wi(t) and velocity ẇi . Then, we 
define the kinetic energy as

K (t, T w) = 1

2
ψ

n∑
i=1

mi(Ti wi)
2. (2)

Clearly, if Ti = T = d/dt and ψ(t) ≡ 1 then we have K = 1
2

∑n
i=1 mi ẇ2

i , which returns the classic case of analytic mechan-

ics. We notice on passing that one could always adsorb the dissipative function factor by introducing T ψ

i := √
ψTi , so as 

K (t, T w) = 1
2

∑n
i=1 mi(T ψ

i wi)
2. Now, let us consider a Lagrangian simply composed of weighed the sum of the potential 

V (·, ·) and the kinetic energy

F (t, w, T w) =
n∑

i=1

F (t, wi, Ti wi) =
n∑

i=1

K (t, Ti wi) + γ V (t, w). (3)

Here we mostly assume γ ∈ R, so as the cognitive action gets a clear meaning in terms of regularization theory. However, 
it is important to notice that if γ = −1 the cognitive action strictly relates to classic action in mechanics. The consequences 
of different choices of γ will become more clear in the reminder of the paper. The classic problem of supervised learning 
is that of discovering wo = arg min A[w], where

A[w] =
t1∫

t0

F (t, w, T w) dt (4)

is the cognitive action of the system. While there is an intriguing analogy with analytic mechanics (see Table 1), we empha-
size that, while in mechanics we are only interested in stationary points of the mechanical action, in learning, we would 
also like to determine the minimum of cognitive action defined by equation (4). Interestingly, as we will see later, the strict 
connection with analytic mechanics also makes sense when considering strong dissipation (see also [6]).

Finally, a comment on the minimization of the cognitive action (4) is in order. In general, the problem makes sense 
whenever the Lagrangian is given all over [t0, t1]. The very nature of the problem results in the explicit time dependence of 
F (·, ·, ·), which, in turn, depends on the information coming from the interactions of the agent with the environment. As a 



86 A. Betti, M. Gori / Theoretical Computer Science 633 (2016) 83–99
consequence, if there is no restriction on the nature of this interaction then the optimization problem does require all the 
information coming in the [t0, t1] interval. However, the environmental interactions that are of interest in this paper are 
those that are typically associated with learning processes, where after the agent has inspected a certain amount of infor-
mation, it makes sense to involve it in predictions on the future. Hence, whenever we deal with a truly learning environment, 
in which the agent is expected to capture regularities in the inspected data, as it will be shown, the minimization problem 
becomes well-posed and nicely fits in the context of on-line learning.

3. Euler–Lagrange laws of learning

Let us consider the minimization of functional A[·] defined by equation (4). Throughout the paper, we assume that 
the linear operators T admits the adjoint T 	 . As stated in the following proposition, the coefficients of T 	 come directly 
from T ’s.

Proposition 3.1. Given the linear differential operator T of degree �, defined by (1), its adjoint operator is also a linear differential 
operator of the same degree with coefficients

βκ(t) =
∑
j≥κ

(−1) j
(

j

κ

)
α

( j−κ)

j (t) (5)

Proof. If we use Leibniz formula, we have

d j

dt j
(α j(t) · χ(t)) =

j∑
κ=0

(
j

κ

)
α

( j−κ)

j (t)
dκχ

dtκ
(t).

From the definition of adjoint operator, we can easily see that, if we pose D j := d j/dt j , then its adjoint is (D j)	 = (−1) j D j . 
Then we get

T 	(t) =
�∑

j=0

(−1) j
j∑

κ=0

(
j

κ

)
α

( j−κ)

j (t)
dκ

dtκ

=
�∑

κ=0

∑
j≥κ

(−1) j
(

j

κ

)
α

( j−κ)

j (t)
dκ

dtκ
≡

�∑
k=0

βk(t)
dk

dtk

from which the thesis follows. �
Let us calculate the variation of the functional (4), in the case n = 1, over the interval [t0, t1] by assuming that2 the sta-

tionary point w(·) has end-points (t0, w(κ)(t0)) and (t1, w(κ)(t1)) with κ = 0, . . . , � −1. Let us consider w̌(t) = w(t) + εξ(t), 
where ξ(·) is a variation and ε ∈ R. Clearly, the conditions on the boundaries on w(κ) yield corresponding conditions on 
the variation

ξ (κ)(t0) = ξ (κ)(t1) = 0, κ = 0, . . . , � − 1. (6)

Then we have

δA = A[w̌] − A[w]

=
t1∫

t0

[F (t, w + εξ, T w + εT ξ) − F (t, w, T w)]dt

= ε ·
t1∫

t0

[F w · ξ + F T w · T ξ ]dt +O(ε2).

Now, because of conditions (6), the second term can be expressed by

t1∫
t0

F T w · T ξ dt =
t1∫

t0

(T 	 F T w) · ξ dt.

2 Here, we use the κ-order derivative notation Dκ w := w(κ) and, for κ = 0, we assume w0 := w .
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Hence, we get

δA = ε ·
t1∫

t0

[F w + T 	 F T w ] · ξ dt.

When imposing the stationary condition δA = 0, because of the fundamental lemma of variational calculus we get

F w + T 	 F T w = 0. (7)

Now we can easily see that the above result can be generalized to the set of variables wi , i = 1, . . . , n. Let us consider 
the general case in which we use an operator Ti for each variable wi . In this case the variation turns out to be

δA = ε ·
t2∫

t1

n∑
i=1

(F wi + T 	
i F Ti wi ) · ξi dt.

Finally, this analysis leads to a necessary condition for the stationary of functional A, that is given in the following theorem.

Theorem 3.1. Let us assume that we are given the values of w(κ)(t0) and w(κ)(t1) with κ = 0, . . . , � − 1. Then functional (4) admits 
a stationary point wi, i = 1, . . . , n, provided that

F wi + T 	
i F Ti wi = 0 i = 1, . . . ,n. (8)

Remark 3.1. The proof of the theorem follows the classic principles of variational calculus to determine stationary points 
(see e.g. [7,8]). The only specific issue that arises in the given result concerns the presence of operators Ti instead of the 
single derivatives, which plays an important role in the reminder of the paper.

Remark 3.2. In the formulation of learning, one cannot typically rely on the boundary conditions that are assumed in 
the theorem, whereas it makes sense to make assumptions on the initial conditions w(κ)(t0), κ = 0, . . . , 2� − 1 (Cauchy 
conditions). Interestingly, in case in which the Euler–Lagrange equations (8) are asymptotically stable, the effect of the 
initial condition vanishes as t → ∞. In this paper we are mostly interested in exploring the environmental interactions of 
the agent under asymptotic stability.

Remark 3.3. Equations (8) have been derived under the assumption that we are given the end-points (t0, wκ (t0)) and 
(t1, wκ (t1)) with κ = 0, . . . , � − 1. While they represent a necessary condition for stationarity, their integration requires 
the knowledge of the boundary condition, which leads to a batch-mode formulation of learning. This is related to the 
comments at the end of Section 2 concerning the on-line formulation of learning. However, if the learning environment is 
periodic with period τ and nτ pairs in each period, that is if (u(ti), si) = (u(ti + τ ), si+nτ ), there is experimental evidence 
to claim that the causality issue raised at the end of Section 2 disappears [9]. Basically, the on-line learning on periodic 
learning environment returns a solution that very well approximates the one corresponding to the batch-mode. A more 
interesting case, that is worth investigating, is the one of almost periodic [10] environments in which, roughly speaking, 
τ can depend on t . The restriction to truly learning online environments, in which the regularities can be captured because 
of underlining statistical assumptions, might be better captured by boundary conditions different with respect to those 
expressed by equations (6). For example, in the simplest case of T = D , one can impose that the weights converge over large 
intervals, which corresponds with the transversality condition [8] on the right border F T wi

(t, wi, T wi)|t=t1 � 0. However, in 
this paper, we do not address this issue, whereas we explore the behavior of equations (8) by means of an analysis based 
on “energy balance”.

Finally, it is also worth mentioning that the given Euler–Lagrange equations get to stationary points and, therefore, 
depending the learning task, the actual minimization of the cognitive action might not be achieved. This is somewhat related 
to the classic framework of supervised learning, where the discovering of optimal solutions also in finite-dimensional spaces 
may led to suboptimal solutions [11].

In the case of the cognitive action defined by the Lagrangian of equation (3) we have

T 	
i (ψTi wi) + γ V wi = 0 i = 1, . . . ,n. (9)
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reduction to mechanics

Let us assume that ∀i = 1, . . . , n : Ti = T = D be, and let γ = −1 be. Then we consider the Lagrangian

F (t, w, T w) = 1

2
ψ

n∑
i=1

mi(D wi)
2 − ψ V (w)

where ψ = eθt . Then the Euler–Lagrange equations (see Theorem 3.1) become

D2 wi + θ D wi + V wi = 0 i = 1, . . . ,n, (10)

which corresponds with damping oscillators in classic mechanics. Here we can promptly see the role of function ψ(·) in 
the birth of dissipation. Moreover, the role of γ = −1 becomes clear in order to attach the classic meaning of potential to 
function V . In addition, this is fully coherent with the definition of action, where the Lagrangian is L = K − V .

even-order γ sign flip

Let us consider the case T = αo + α1 D + α2 D2 and ψ(t) = eθt .
From Proposition 3.1, we have T 	 = αo − α1 D + α2 D2 and we can easily see that the EL-equations becomes

D4 wi + β3 D3 wi + β2 D2 wi + β1 D wi + βo wi + γ

α2
2mi

V wi = 0 (11)

where

βo := αoα2θ
2 − αoα1θ + α2

o

α2
2

β1 := α1α2θ
2 + (2αoα2 − α2

1)θ

α2
2

β2 := α2
2θ2 + α1α2θ + 2αoα2 − α2

1

α2
2

β3 := 2θ.

The comparison with equation (10) reveals and interesting difference which involves the role of the sign of γ in stability. 
While in mechanics we have γ = −1, when involving the second-order differential operator of this example, in order to get 
stability, from Routh–Hurwitz stability criterion we immediately conclude that γ > 0 is a necessary condition. This can be 
straightforwardly extended to any even order of T . In this paper, this property is referred to as γ sign flip, and motivates 
the study of high-order operators.

4. Dissipative Hamiltonian formulation of learning

Now we use Legendre transform in order to obtain the Hamiltonian formulation of the problem. We introduce the 
notations ḟ i := Ti f i and f̊ i := T 	

i f i , so as equations (8) can be re-written as

F wi + F̊ ẇi = 0 i = 1,2, . . . ,n. (12)

Now, let us introduce the conjugate momentum υi

υi := ∂ F

∂ ẇi
. (13)

Likewise, we define the Hamiltonian as

H(t, w,υ) :=
n∑

i=1

υi ẇ i − F (t, w, ẇ), (14)

where ẇi must be thought of as functions of wi and υi .

Theorem 4.1. The Euler–Lagrange equations (8) are equivalent to the 2n Hamilton equations

ẇi = ∂ H

∂υi
, (15)

υ̊i = ∂ H
. (16)
∂ wi
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Moreover, we have

∂ H

∂t
= −∂ F

∂t
. (17)

Proof. As usual, we introduce the canonical variables wi and υi . Then the canonical equations arise from the EL-
equations (8) and from definition (13), as follows:

∂ H

∂υi
= ∂

∂υi

( n∑
j=1

υ j ẇ j − F (t, w, ẇ)

)
= ẇi + υi

∂ ẇi

∂υi
− ∂ F

∂ wi

∂ wi

∂υi
− ∂ F

∂ ẇi

∂ ẇi

∂υi
= ẇi,

∂ H

∂ wi
= ∂

∂ wi

( n∑
j=1

υ j ẇ j − F (t, w, ẇ)

)
= ẇi

∂υi

∂ wi
+ υi

∂ ẇi

∂ wi
− ∂ F

∂ wi
− ∂ F

∂ ẇi

∂ ẇi

∂ wi

= − ∂ F

∂ wi
= T 	 ∂ F

∂ ẇi
= υ̊i .

Finally, equation (17) arises from (16) as follows

∂ H

∂t
= ∂

∂t

( n∑
i=1

υi ẇ i − F (t, w, ẇ)

)
=

n∑
i=1

υi
∂ ẇi

∂t
−

n∑
i=1

F ẇi

∂ ẇi

∂t
− ∂ F

∂t

= −∂ F

∂t
. �

The integration of Hamilton equations (15) and (16) can be written formally as

wi = −1
Ti Hυi (18)

υi =
−1
T 	

i H wi ,

where 
−1
Ti and 

−1
T 	

i denote the inverse operators of Ti and T 	
i , respectively. Notice that whenever we use the inverse operator, 

we need to solve an ordinary differential equation of order � and, therefore, we must always impose � initial conditions 
to get a unique solution. While equations (15) and (16) can be used for determining the evolution of w , as it will be 
shown in Section 6, equation (15), can offer a picture of learning in terms of energy balance. The following definition plays 
a fundamental role in the analysis of energy balance. The definition involves the set of variables N := {(wi, υi), i ∈ Nn}
paired with the associated differential operator T .

Definition 4.1. Given the system � ∼ (N , T ), along with any pair of functions φ1(t, w, υ) and φ2(t, w, υ), with continuous 
derivatives up to the �-th order, the term

{φ1, φ2}T
D :=

n∑
i=1

(
∂φ1

∂ wi
D

−1
T

∂φ2

∂υi
+ ∂φ1

∂υi
D

−1
T 	 ∂φ2

∂ wi

)
(19)

is referred to as the bracket of φ1 and φ2, with respect to operators D and T .

For the sake of simplicity, in the reminder of the paper, we will omit the subscript and superscript, so as we will simply 
use the nation {φ1, φ2}. We also notice that this can be regarded as a formal definition, unless we know (as it will be in 
what follows) the initial conditions for

−1
T

∂φ2

∂υi
and

−1
T 	 ∂φ2

∂ wi
.

We can easily see that general {φ1, φ2} �= {φ2, φ1} and that {φ1, φ2} is linear only in the first argument.

Theorem 4.2. Given the system defined by w : [t0, t1] → R
n and any φ(t, w, υ) with continuous derivates up to the �-th order, we 

have

dφ

dt
= ∂φ

∂t
+ {φ, H} . (20)
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Proof. We have

dφ

dt
= ∂φ

∂t
+

n∑
i=1

(
φwi D wi + φυi Dυi .

)
(21)

If we plug wi and υi given by equation (18) into equation (21) we get

dφ

dt
= ∂φ

∂t
+

n∑
i=1

(
φwi D

−1
T Hυi + φυi D

−1
T 	 H wi

)
= ∂φ

∂t
+ {φ, H} . �

5. BG-brackets

In this section we describe some properties of the brackets {·, ·} introduced by Definition 4.1. Their analysis leads to an 
in-depth understanding of energy exchange processes. We start noticing that if ∀i = 1, . . . , n : Ti = D then {·, ·} reduce to 
classic Poisson’s brackets. This is formally stated by the following proposition

Proposition 5.1. The brackets {·, ·} are a generalization of Poisson brackets to the case in which ∀i = 1, . . . , n : Ti = D, that is

{φ1, φ2} = {φ1, φ2}P .B..

Proof. From Proposition 5, under the assumption that ∀i = 1, . . . , n : Ti = D , we derive that T 	
i = −D . Hence, we have

{φ1, φ2} =
n∑

i=1

(
∂φ1

∂ wi
D

−1
D

∂φ2

∂υi
− ∂φ1

∂υi
D

−1
D

∂φ2

∂ wi

)

=
n∑

i=1

(
∂φ1

∂ wi

∂φ2

∂υi
− ∂φ1

∂υi

∂φ2

∂ wi

)

= {φ1, φ2}P .B.. �
rest of the adjoint

Now, we focus on the case3 T �= D . Interestingly, we will show that the enrichment of the differential operator T with re-
spect to D has important consequences on the energy balance equation (20). While from Proposition 5.1 we have {H, H} = 0, 
it will be shown that T �= D , in general leads to {H, H} �= 0. Let

〈w,υ〉 :=
t∫

t0

w(τ )υ(τ )dτ (22)

be. We introduce a couple of concepts that turn out to be useful in the following. First, we notice that any differential 
operator T can be paired with a real number, which comes out when considering the behavior on the borders of 〈T w, υ〉.

Definition 5.1. Let T be a differential operator and let 〈·, ·〉 be the inner product given by (22). Then for any given function 
pair of functions f , g ∈ W �,2

�(T | f , g) := 〈T f , g〉 − 〈 f , T 	g〉, (23)

is referred to as the rest of the adjoint of T with respect to f and g .

Clearly, �(·| ·, ·) is linear in each of its arguments and it is distributive in both the operator and the two function slots. 
Moreover, we have that �(c · I| f , g) ≡ 0 for any constant c. Notice that �(T | f , g) := 〈T f , g〉 = 0 whenever we are given 
the same boundary conditions on f and g .

Proposition 5.2. Let T m = ∑m
i=0 αo Di be, where αi are real constant. Then the rest of the adjoint �(T | w, v) w.r.t. w and υ can be 

computed by the recurrent equations

3 For the sake of simplicity, in the remainder of the paper, we assume ∀i = 1, . . . , n : Ti = T .
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i. �(T m| w,υ) = �(T m−1| w,υ) + αm�(Dm| w,υ),

ii. �(Dm| w,υ) =
[
υDm−1 w

]
− �(Dm−1| w, Dυ), (24)

where [u] := u(t1) − u(t0) is the variation on the borders of u.

Proof.
i. We have

�(T m| w,υ) = 〈T m−1 w + αm Dm w,υ〉 − 〈w, (T m−1)	υ + αm(Dm)	υ〉
= �(T m−1| w,υ) + αm

(〈Dm w,υ〉 − 〈w, (Dm)	υ〉)
= �(T m−1| w,υ) + αm�(Dm| w,υ).

ii. In order to get the recurrent equation ii., we start using integration by parts as follows:

�(Dm w|υ) = 〈Dm w,υ〉 − 〈w, (Dm)	υ〉
= 〈Dm w,υ〉 − (−1)m〈w, (Dm)υ〉
= [v Dm−1 w] − 〈Dυ, Dm−1 w〉 + (−1)m−1

(
[w Dm−1υ] − 〈D w, Dm−1υ〉

)
= [v Dm−1 w] + [w(Dm−1)	υ] −

(
〈Dυ, Dm−1 w〉 + 〈D w, (Dm−1)	υ〉

)
.

Now we have

�(Dm−1| w, Dυ) = 〈Dm−1 w, Dυ〉 − 〈w, (Dm−1)	Dυ〉,
and, therefore, we get

�(Dm| w,υ) = [v Dm−1 w] + [w(Dm−1)	υ]
−

(
〈w, (Dm−1)	Dυ〉 + �(Dm−1| w, Dυ) + 〈D w, (Dm−1)	υ〉

)
= [v Dm−1 w] + [w(Dm−1)	υ] − [w(Dm−1)	υ] − �(Dm−1| w, Dυ)

= [v Dm−1 w] − �(Dm−1| w, Dυ). �
Example 5.1. Let T = α0 +α1 D +α2 D2. To calculate the rest of the adjoint we use Proposition 5.2. From equation (24)-ii we 
can calculate �(Dm| w, υ) for m = 1, 2, 3. First, notice that �(D0| w, υ) = 0. Then, for D we have

�(D| w,υ) = [υw] − �(D0| w, D0υ) = [υw].
Now we can calculate �(D2| w, υ):

�(D2| w,υ) = [υD w] − �(D| w,υ)

= [υD w] − �(D| w, Dυ)

= [υD w] − [w Dυ] = [υD w − w Dυ].
Finally, from equation (24)-ii, we get

�(T | w,υ) = [α1 wυ + α2(υD w − w Dυ)]. (25)

The notion of rest of the adjoint plays an important role in the remainder of the paper, where we are interested in the 
following extended definition which involves learning system � ∼ (N , T ).

Definition 5.2. Given � ∼ (N , T ) we define

M(�, [t0, t1]) :=
n∑

i=1

�(T | wi, Dυi) + �(D| wi, T 	υi). (26)

M(�, [t0, t1]) is referred to as the rest of T with respect to N .

The following lemma offers an appropriate re-writing of M(�, [t0, t1]) to gain interesting conclusions.



92 A. Betti, M. Gori / Theoretical Computer Science 633 (2016) 83–99
Lemma 5.1.

M(�, [t0, t1]) :=
n∑

i=1

〈(T + D)wi, (T 	 + D)υi〉. (27)

Proof. The proof is a straightforward consequence of the definition. �
First, we notice that if T = D then T 	 + D = 0 and, consequently M(�, [t0, t1]) = 0. Clearly, the lemma enlightens the 

way M(�, [t0, t1]) emerges from breaking the adjoint property T 	 + D = 0, that holds for T = D .
In the case of Example 5.1, using equation (25) we get

M(�, [t0, t1]) =
n∑

i=1

�(T | wi, Dυi) + �(D| wi, T 	υi)

=
n∑

i=1

[α1 wi Dυi + α2(Dυi D wi − wi D2υi)] + [wi(α0 − α1 Dυi + α2 D2υi)]

=
n∑

i=1

[α0 wi + α2 D wi Dυi]

This example suggests that M(�, [t0, t1]) depends on the value assumed by

B(t, w, D w, Dυ) =
n∑

i=1

α0 wi + α2 D wi Dυi

on the boundaries of [t0, t1]. We have

M(�, [t0, t1]) = B(t1, w, D w, Dυ) − B(t0, w, D w, Dυ).

Clearly, this holds for � with any differential operator T . As a consequence, whenever we know that � exhibits a periodic 
behavior on [t0, t1] then

M(�, [t0, t1]) = 0.

Now we show a property of M which leads to a clear interpretation in terms of the energy exchanges of the agent with the 
environment.

Theorem 5.1. Let T be a positive self-adjoint operator with constant coefficients and let us consider a system � such that υi = T wi . 
Then M ≥ 0.

Proof. From the hypothesis T = T 	 . Then, from the definition of M we get

M(�, [t0, t1]) =
n∑

i=1

�(T | wi, Dυi) + �(D| wi, Tυi)

=
n∑

i=1

〈T wi, Dυi〉 − 〈wi, T Dυi〉 + 〈D wi, Tυi〉 + 〈wi, DTυi〉

=
n∑

i=1

〈T wi, Dυi〉 + 〈D wi, Tυi〉

=
n∑

i=1

〈(T + D)wi, (T + D)υi〉.

Since υi = T wi and T ≥ 0 we get

M(�, [t0, t1]) =
n∑

i=1

〈(T + D)wi, (T + D)T wi〉

=
n∑

i=1

〈(T + D)wi︸ ︷︷ ︸, T (T + D)wi︸ ︷︷ ︸〉 =
n∑

i=1

〈ui, T ui〉 ≥ 0. �

ui ui
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T–D Commutator

Another important asymmetry arises which plays an important role in case of time-dependent differential operators. The 
following definition turns out to be useful.

Definition 5.3. Given any two differential operators T1 and T2 we define

[T1, T2] := T1T2 − T2T1. (28)

The differential operator [T1, T2] is referred to as the commutator of T1 and T2.

Of course, we have [T1, T2] + [T2, T1] = 0. In particular, in the following, we are interested in the case in which T1 = T
and T2 = D . In that case

T D y − DT y =
�∑

i=0

αi Di D y − D
�∑

i=1

αi Di y

=
�∑

i=0

αi Di+1 y −
�∑

i=0

Dαi Di y −
�∑

i=0

αi Di+1 y

= −
�∑

i=0

Dαi Di y ≡ −
�∑

i=1

βi Di y. (29)

Clearly, [T , D] = 0 for constant αi coefficients, whereas in general, [T , D] is a differential operator defined by coefficients βi . 
Like for the rest of the adjoint, it turns out to be useful to extend the notion of commutator to the case of a set conjugate 
variables N for differential operators T and D .

Definition 5.4. Let us consider the system � = {N , T } over [t0, t1]. Then

ϒ(�, [t0, t1]) :=
n∑

i=1

〈wi, [T 	, D]υi〉 (30)

is referred to as the T 	 − D commutator of N .

Again, the T –D commutator expresses the degree of asymmetry between T and D . We have symmetry [T , D] = T D −
DT = 0 whenever T is a time-invariant differential operator, whereas the asymmetry just arises because of the temporal 
evolution of coefficients αi . In order to give an interpretation of ϒ(�, [t0, t1]), let us consider the case in which T is 
replaced with φT , where φ is a positive increasing monotonic function. This case has been already mentioned in Section 2
with φ(t) = √

ψ(t). We discuss the basic idea in the simplest case in which T = φD .

Theorem 5.2. Let us assume that M(�, [t0, t1]) = 0. If T = φD then

ϒ(�, [t0, t1]) = −
n∑

i=1

mi

t1∫
t0

(D wi)
2φDφ dt. (31)

Proof. First, we can easily see that

T 	 = −Dφ · D0 − φD,

where D0 = I is the identity operator. Now we can calculate

[T 	, D] = T 	D − DT 	 = (−Dφ · I − φD)D − D(−Dφ · I − φD)

= D2φ I + Dφ D.

Now, since M(�, [t0, t1]) = 0 and υi = mi T wi = miφD wi , we have

ϒ(�, [t0, t1]) =
n∑

i=1

t1∫
t0

wi(υi D2φ + Dφ Dυi)dt =
n∑

i=1

t1∫
t0

wi(D(υi Dφ))dt

= −
n∑

i=1

t1∫
υi D wi Dφ dt = −

n∑
i=1

mi

t1∫
Dφ(D wi)

2φ dt. �

t0 t0
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Let us consider the case in which ψ(t) = φ2(t) = eθt . We get

−ϒ(�, [t0, t1]) =
n∑

i=1

mi

t1∫
t0

Dφ(D wi)
2φ dt = 1

2

n∑
i=1

miθ

t1∫
t0

(D wi)
2ψ dt > 0.

This offers a clear interpretation of −ϒ(�, [t0, t1]), which turns out to be the dissipated energy of � over [t0, t1]. However, 
notice that this interpretation is limited to the case Dφ > 0.

Example 5.2. Let T = sin(ωt) · D be. We have

T 	 = −ω cos(ωt) · I − sin(ωt) D

and

[T 	, D] = −ω2 sin(ωt) · I + ω cos(ωt) D.

Under the assumption that M(�, [t0, t1]) = 0 and υi = mi T wi = mi sinωt · D we have

ϒ(�, [t0, t1]) =
n∑

i=1

t1∫
t0

wi D(ω cos(ωt)υi)dt = −
n∑

i=1

t1∫
t0

cos(ωt)υi D widt

= −1

2

n∑
i=1

mi

t1∫
t0

sin 2ωt(D wi)
2dt.

This example clearly shows that the sign of ϒ(�, [t0, t1]) can flip with functions ψ(·) that are not monotonic. Hence, 
ϒ(�, [t0, t1]) models interactions of the agent with the environment where the energy flows in both directions.

The {·, ·} brackets assume a special meaning when involving the Hamiltonian of a given system.4

Theorem 5.3. Given the system � over [t0, t1] then

{H, H} = d

dt
(M + ϒ). (32)

Proof. Because of the Hamilton equations, we have

{H, H} =
n∑

i=1

(
H wi D

−1
T Hυi + Hυi D

−1
T 	 H wi

)

=
n∑

i=1

(
T 	υi D

−1
T T wi + T wi D

−1
T 	 T 	υi

)

=
n∑

i=1

(
T 	υi · D wi + T wi · Dυi

)
.

Now, if we integrate over [t0, t] and use the definition of rest of the adjoint and of commutator, we get

t∫
t0

{H, H}dτ =
n∑

i=1

t∫
t0

(T 	υi · D wi + T wi · Dυi)dτ

=
n∑

i=1

〈T 	υi, D wi〉 + 〈T wi, Dυi〉

=
n∑

i=1

�(D|wi, T 	υi) − 〈DT 	υi, wi〉 + �(T |wi, Dυi) + 〈wi, T 	Dυi〉

4 Whenever there is no risk of ambiguity, in the following we drop the dependence on �, [t0, t1] in M and ϒ .
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=
n∑

i=1

�(D|wi, T 	υi) + �(T |wi, Dυi) +
n∑

i=1

〈wi, (T 	D − DT 	)υi〉

= M + ϒ.

Finally, we get the thesis when deriving w.r.t. to t both sides. �
This result shows that the {·, ·} brackets assumes a special meaning in the case in which both the operands are the 

Hamiltonian function. In particular, in that case, there is a Boundary Generation expressed by M(�, [t0, t1]), due to the rest 
of the adjoint, and a Bartering Generation expressed by ϒ(�, [t0, t1]), which is due to the exchange of the operators T 	

and D . For this reason, {·, ·} is referred to as the BG-brackets.

6. Energy balance in learning processes

In this section we discuss energy balancing connected with the general form of cognitive action whose Lagrangian is 
given by equation (3). While equations (15) and (16) can be used to determine the learning dynamics, equation (17) offers 
an interesting view of learning in terms of energy balancing. Notice that the equation involves the canonical variables w
and υ in H , as well as ẇ in F . An alternative way of constructing energy balance only based on canonical variables is that 
of using expressing {H, H} according to Theorem 5.3. We have

dH

dt
= dK

dt
− γ

dV

dt
= ∂ H

∂t
+ {H, H} = −γ

∂V

∂t
+ ∂ K

∂t
+ d

dt
(M + ϒ).

We also have

dV

dt
= ∂V

∂t
+ {V , H},

dK

dt
= ∂ K

∂t
+ {K , H},

which suggests the introduction of functions V and K defined by

dV
dt

= {V , H} = dV

dt
− ∂V

∂t
, (33)

dK
dt

= {K , H} = dK

dt
− ∂ K

∂t
. (34)

Finally, the analysis is summarized by the following theorem, which establishes the energy balance of any learning system. 
Unlike equation (17), the given energy balance is fully expressed in terms of canonical variables w and υ .

Theorem 6.1. The system (�, T ) evolves according to the invariant condition

d

dt
(K − γV − M − ϒ) = 0. (35)

An important source of interaction is represented by the environmental potential energy

E = E(�, [t0, t]) :=
t∫

t0

∂V

∂τ
dτ ,

and by the bartering energy ϒ , which appears whenever T 	 does not commutate with D . While K reflects the velocity of 
the connections dynamics, the boundary energy M takes into account the exchange of energy at the beginning and at the 
current time of the learning horizon.

damping oscillators

In order to provide an interpretation of analytic mechanics as a special case, let us consider T = D and γ = −1. Basically, 
we are considering the Lagrangian which has originated the damping oscillator of equation (10) From the definition (30)
of ϒ we have [T 	, D] = [−D, D] = 0 and, therefore, ϒ = 0. Likewise, from Lemma 5.1, since D + T 	 = 0, we conclude that 
M = 0. As a consequence, the invariant of Theorem 6.1, expressed in terms of canonical variables, yields

d

dt
(K + V) = 0. (36)

This is in fact the classic invariant condition of classic mechanics, which establishes that the sum of the kinetic and po-
tential energies is invariant. Interestingly, this holds also in cases in which the kinetic energy K and the potential V are 
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dependent on time, since it is intimately connected with the nullification of {H, H}. In the classic case in which there is no 
dissipation, from the definition of V and K, given in equations (33) and (34), this means that ∂V /∂t = 0 and ∂ K/∂t = 0. As 
a consequence dV/dt = dV /dt and dK/dt = dK/dt which, in turn, yields

d

dt
(K + V ) = 0. (37)

In case of dissipation, only the energy balance (36) holds, while the above balance clearly fails. In order to model the 
damping oscillations, following what has already been introduced in Section 3 we have υi = miψ ẇi , where ψ(t) = eθt . 
Hence, we can express the potential and kinetic energy by

V (t, w) = ψ V (t, w), (38)

K (t,υ) = 1

ψ

n∑
i=1

υ2
i

2mi
= K (υ)

ψ
.

From the definition of V and K we promptly get

dV
dt

= ψ
dV

dt
,

dK
dt

= 1

ψ

dK

dt
.

Hence, the energy balance turns out to be

d

dt
K (υ(t)) + ψ2 d

dt
V (t, w(t)) = 0. (39)

When ψ(t) = eθt we have ψ(t) ≥ 1, which indicates that as the time increases, the kinetic energy drops more that in the 
case ψ(t) = 1 (no dissipation). A related energy balance can be obtained which only involves the weights. In this case let us 
define

K (t, ẇ) = 1

2
ψ

n∑
i=1

mi ẇi = ψ K (ẇ),

V (t, w) = ψ V (t, w).

It is worth mentioning that since equation (17) involves both the Hamiltonian H and the Lagrangian F , it is opportune to 
pose H̃(t, w, ẇ) := H(t, w, υ), where ẇ and υ are connected by υi = miψ ẇi . Hence, we get5

D H = D(K + V ) = D(ψ K + ψ V ) = ψ̇ K + ψ
dK

dt
+ ψ̇ V + ψ

dV

dt

= −∂ F

∂t
= − ∂

∂t
(ψ K − ψ V ) = −ψ̇ K + ψ̇ V + ∂V

∂t
.

Since ψ(t) = eθt we get

dK

dt
+ 2θ K = −dV

dt
+ ∂V

∂t
. (40)

If we integrate over the interval [t0, t1] we get

K (t0) + V (t0) +
t1∫

t0

∂V

∂t
dt = K (t1) + V (t1) + 2θ

t1∫
t0

Kdτ . (41)

In case there is no environmental energy then the dissipated energy vanishes as t1 → ∞, that is limt1→∞ K (t1) = 0. This is 
an immediate consequence of (41), which could not be verified in the opposite case because of the finiteness of the initial 
K (t0) + V (t0) and final K (t1) + V (t1) energies, respectively.

5 For the sake of simplicity, we overload the notation and use H and K instead of the corresponding H̃ and K̃ .
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machine learning

Let us consider the problem of learning introduced in Section 2. According to equation (3) the Lagrangian can be split 
into the kinetic term and into the loss term, which comes from the environmental constraints. Like for the case of classic 
mechanics, let us choose T = D and γ = −1. As we have already seen, this leads to a cognitive action.6 From (14) we get

υi = ∂ F

∂ ẇi
= miψ ẇi,

and, therefore, like for mechanics we can construct the Hamiltonian from equations (38). The function H = K − γ V
is referred to as the energy of the learning system. Since {·, ·} is linear in their first argument, we have {K , H} =
{H, H} + γ {V , H}. Like for any learning process, even the simple case of supervised learning does require to involve the 
environmental potential energy E , which arises because of the external constraints that are posed to the agent by the en-
vironment. From the general energy balance (41), that clearly holds also for learning, we can see that the environmental 
potential energy, supplied by the supervisor, must be dissipated. Interestingly, any learning process can be thought of as 
a special translation of such a transformation between the environmental and dissipated energies, with the purpose of 
changing the potential energy, which prescribes the effectiveness of the environmental constraints. As shown in Section 3, 
when considering higher-order T operators, we get more complex dynamics, as well as structural differences (see e.g. the 
even-order γ sign flip). In those cases, the equilibrium presents new facets that are mostly due to the extended definition 
of kinetic energy given in this paper, where its vanishing does not simply mean that D wi = 0 but T wi = 0. Hence there are 
induced dynamics at near-equilibrium points where the trajectory is in the kernel of T .

While the formulation of supervised learning involves distributional equations, in general learning mechanisms formu-
lated in the theory we deal with ordinary differential equations that are strongly characterized by the potential energy. 
The re-formulation of machine learning given in [2] offers a general mechanism to construct potential energies capable of 
modeling also unsupervised and semi-supervised schemes.

Notice that E involves the environmental interactions that consist of a structural change of V (t, w), but as shown in 
Example 5.2, other environmental interactions can arise from the bartering energy ϒ , that can be reduced to temporal 
variations of T . Finally, it is worth mentioning that the general form of the cognitive action defined by the Lagrangian 
F (t, wi, Ti wi) corresponds with recurrent neural networks in their most general non-linear form.

7. Supervised learning and collapsing of dimensionality

The theory that has been proposed gives information-based laws of learning, and it is clearly independent of the nature 
of the learning agent. In this section, we give insights on how the theory can originate machine learning algorithms and, 
in particular, we prove that the classic gradient algorithm of supervised learning can be derived from the Euler–Lagrange 
equations (9).

In the case of supervised learning the Euler–Lagrange equations are

mi T
	(ψT wi(t)) + γ ψ

∑
κ∈ �Lt

( f (w(tκ ), u(tκ )) − sκ ) f wi (w(tκ ), u(tκ ))δ(t − tκ ) = 0, (42)

where i = 1, . . . , n. Now we look for differential operators L such that

ψ Lwi = T 	(ψT wi). (43)

In the case in which ψ(t) = eθt and the coefficients α j are time-invariant, when using Proposition 5, we have

T 	(ψT wi) =
�∑

h=1

(−1)hαh Dh(eθt
�∑

κ=1

ακ Dκ wi)

=
�∑

κ=1

�∑
h=1

(−1)hαhακ

h∑
r=0

(
h

r

)
θ reθt Dh+κ−r wi

= eθt︸︷︷︸
ψ

�∑
κ=0

�∑
h=1

h∑
r=1

(−1)h
(

h

r

)
αhακθ r Dh+κ−r wi

︸ ︷︷ ︸
Lwi

.

6 Notice that one could reproduce the same Lagrangian by choosing the operator T = √
ψ D , where ψ(t) = eθt . In that case, however, as shown in 

Lemma 5.1 and Theorem 5.2 the boundary and bartering energies M and ϒ are not necessarily null and, therefore, the energy balance needs to involve all 
the terms of equation (35).
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Here we can see7 that equation (43) leads to discovering L, which is a differential operator of order8 2�.
Let us consider t0 = 0 and let g(·) such that

Lg = δ. (44)

where g(t) = 0 for t < 0. This is a linear distributional differential equation of order 2�. From the initial value theorem, we 
can promptly see that

lim
t→0

g(t) = lim
s→∞ sG(s) = 0. (45)

Because of the linearity, we can invoke the superposition principle, we can immediately see that

ŵi(t) = −γ
∑

κ∈�Lt

f (w(tκ ), u(tκ )) − sκ
mi

f wi (w(tκ ), u(tκ ))︸ ︷︷ ︸
ζκ,i

g(t − tκ ), (46)

is a solution of (42), where g(t) = ∑�
j=1 q jeρ j t , and ρ j ∈ ρ(T ) is one of the � roots of the characteristic polynomial of T . 

Clearly, if wo
i (·) ∈ N (T ) is any function which belongs to the kernel of T , then wi(·) = ŵi(·) + wo

i (·) is also a solution 
of (42). The space N (T ) is expressed by wo

i (t) =
∑p

j=1 ω jeρ j t , where ω j are uniquely defined by the initial conditions 
Dr wo

i (0), with r = 0, . . . , p − 1. In the case of in which �(ρ(T )) < 0, that is when the characteristic polynomial of T has 
roots with negative real part, then limt→∞ |wi(t) − ŵi(t)| = 0. Because of equation (45), for t = tκ we get

wi(tκ ) = −γ
∑
h<κ

ζh,i g(tκ − th). (47)

In the case of in which �(ρ(T )) < 0, that is when the characteristic polynomial of T has roots with negative real part, the 
computation of w according to equation (46) can be carried out by considering that g(tκ − th) � 0 when tκ − th is large 
with respect to the natural modes of the dynamics induced by T .

Now, the above equation can be nicely approximated by a recurrent form as follows9

wi(tκ+1) = wi(tκ ) − γ g(tκ+1 − tκ ) ζκ,i (48)

Interestingly, this is the classic gradient algorithm of machine learning, where the learning rate is properly given by ηκ+1 =
γ g(tκ+1 − tκ ). This equation opens the doors for in-depth experimentation of the algorithm with the appropriate selection 
of η prescribed by the theory. A preliminary experimental analysis is given in [9].

Finally, it is worth mentioning that the representation of the solution given by equation (47) strongly resembles the one 
of the representer theorem of kernel machines.10 Both theory are based on differential operators; the role of kernels as the 
Green function of the differential operator is now played by the response impulse. The difference that one easily expects 
is that, because of causality, the response impulse is asymmetric (g(t) = 0 for t < 0). However, unlike in classic kernel 
machines, the temporal structure makes it possible to compute the weights by the recurrent equation (48).

8. Conclusion

In this paper we propose a natural learning theory that is based on the variational principle of least cognitive action. 
The theory allows us to understand the evolution of synaptic connections, regardless of assumptions on the structure of the 
agent. While there are close connections with mechanics, the given variational formulation relies on high-order differential 
operators with time-dependent coefficients, that give rise to richer dynamics nicely captured in the new framework of the 
BG-brackets. Interestingly, we show that in the case of supervised learning, the given laws collapse to the classic on gradient 
algorithm. The theory enlightens fundamental issues connected with the adoption of higher-order differential operators, 
including the even order γ sign flip. It is shown that the optimal solution is a temporal expansion of the impulse response 
over the training data, which is the dual of the representer theorem at the basis of kernel machines.

Finally, it is worth mentioning that all studies in machine learning based on modeling the environmental interactions 
by constraints are candidates for the application of the theory. In particular, this framework strongly emphasizes the role 
of time in the learning process, so as the evolution of the weights of the neural synapses follows equations that resemble 
laws of physics, driven by appropriate cognitive actions. We are currently investigating the impact of the results presented 
in this paper in computer vision and, particularly, in semantic labeling.

7 Equation (43) can be satisfied also by other types of dissipation functions.
8 From this equation we can also see the even order γ sign flip.
9 A perfect recurrent realization requires a 2� dimensional system.

10 A formulation of kernel machines that clearly presents the duality with this theory is given in [12].
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