ABSTRACTS OF THE
NINTH INTERNATIONAL CONFERENCE
OF ANTICANCER RESEARCH

October 6-10, 2014
Sithonia, Greece

Under the Auspices of

The Union for International Cancer Control (UICC)
The Asian and Pacific Federation of Clinical Biochemistry (APFCB)
The Asian Pacific Organization for Cancer Prevention (APOCP)
The Austrian Society for Radiation Oncology (ÖGRO)
The European Group on Tumor Markers (EGTM)
The Hungarian Society of Epidemiology
The International Cancer Microenvironment Society (ICMS)
The International Geriatric Radiotherapy Group (IGRG)
The International Institute of Anticancer Research (IIAR)
The International Society for Biological and Environmental Repositories (ISBER)
The International Society of Oncology and Biomarkers (ISOBM)
The Italian Society of Uro-Oncology (SIUro)
The Latinamerican and Caribbean Society of Medical Oncology (SLACOM)
The Lithuanian Society of Radiation Oncology (LSRT)
The North-Eastern German Society of Gynecological Oncology (NOGGO)
The Polish Society of Radiation Oncology (PSTRO)
The Portuguese Society of Radiotherapy - Oncology (SPRO)
The Society of Biotherapeutic Approaches, Japan
The Szeged Foundation for Cancer Research, Hungary
The Turkish Society for Electron Microscopy (TSEM)

Supported by

The International Institute of Anticancer Research
suffering from a particular disease. This approach is, therefore, perhaps uniquely able to contribute to the development of so-called “4P’s medicine”: Predictive, Preventive, Personalized and Participatory (2). Between 2007 and 2013, the EU’s Framework 7 program invested some €207 million in its “Virtual Physiological Human” (VPH) initiative (3), funding over 50 multi-disciplinary biomedical research projects and support actions including ten in oncology. Crucially, each project team was required to include clinicians. The VPH Digital Patient initiative (4) was set up to develop a “roadmap” towards the ultimate exemplar of this approach: a computer model of an individual patient that is complex and precise enough to be used for prognosis prediction and clinical decision making. In this talk I will describe how these principles are being applied to oncology (5, 6) using examples from VPH projects in breast cancer, paediatric oncology and treatment planning, and illustrating the potential value of the “digital cancer patient” to oncologists.


4 http://www.digital-patient.net/


568 SCREENING FOR POTENTIAL HAZARD EFFECTS FROM MULTITARGET ANTHRACYCLINE ON THE CARDIOVASCULAR SYSTEM

S. Saponara1, M. Durante1, M. Provisi1, B. Gorelli1, M. Valoti1, K. Chegaev2, G. Sgaragli1 and F. Fusi1

1Department of Life Sciences, University of Siena, Siena, Italy.

2Department of Medicine Science and Technology, University of Turin, Turin, Italy

Conjugation of doxorubicin (DOX) with NO-releasing groups gives rise to novel multitarget anthracyclines, such as nitroxy-DOX (NitDOX), capable to overcome drug resistance by decreasing the activity of ABC transporters via nitration of critical tyrosine residues on the pumps (1). In addition, NitDOX preferentially accumulates in mitochondria and affects their function, thus representing a prototype of novel multifunctional anthracyclines, which have cellular targets different from, and greater efficacy against, drug-resistant tumor cells than the parent compound (2). The widely described anthracycline toxicity, however, might limit their use. Therefore, the aim of this study was to investigate the NitDOX-induced cardiovascular effects, as potential hazard, by studying its functional and electrophysiological actions in rat aorta rings (3), Langendorff perfused rat heart (4) and A7r5 cells (5). DOX was used as reference compound. At concentrations ≥1 μM, NitDOX partially antagonized phenylephrine-induced contraction in freshly endothelium-denuded rings, while DOX was ineffective. Both drugs did not significantly affect the concentration-response curve to high KCl. In arteries cultured with both drugs for 7 days, NitDOX blocked both phenylephrine- and high KCl-induced contractions at concentrations 10-fold higher than that of DOX. Moreover, NitDOX exhibited L-type Ca2+ channel blocking activity in A7r5 cells. Preliminary results suggest that NitDOX did not affect the cardiac mechanical function and BCG in Langendorff perfused rat heart. In conclusion, NitDOX is a novel NO-releasing anthracycline devoid of significant acute cardiovascular properties, although endowed, at high concentrations of long-term effect on vasculature.

1 Chegaev et al. (2011) ACS Med Chem Lett 2: 494–497

2 Riganti et al. (2013) Mol Pharm 10: 161-74


569 EPIGENETIC CHANGES IN CANCER AND DEVELOPMENT OF COMBINATION THERAPY

Sibaji Sarkar

Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA

Multiple causes may result in uncontrolled growth, including inherited and somatic mutations, activation of oncogenes, silencing of tumor suppressor genes, environmental factors, and epigenetics. Transcriptional regulation by histone acetylation/deacetylation and histone methylation/demethylation is a novel epigenetic mechanism of how gene expression is regulated. CpG residue methylation, hydroxymethylation in the upstream promoter and other regions of genes generate specific mechanisms of gene silencing in many types of cells, including stem cells and cancer cells. The prerequisite of the re-expression of silenced tumor suppressor genes should be the demethylation of these regions. We observed that histone deacetylase inhibitors (HDACi), down regulated DNA methyl transferase 1.