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Abstract
The mapping of a survey variable throughout a continuum or for finite populations of units is usually performed from a

model-dependent perspective. Nevertheless, when a sample of locations/units is selected by a probabilistic sampling

scheme, the complex task of modelling can be avoided by using the inverse distance weighting interpolator and deriving

the properties of maps in a design-based perspective. Conditions ensuring consistency of maps can be derived mainly based

on some obvious assumptions about the pattern of the survey variable throughout the study region as well from the feature

of the sampling scheme adopted to select locations/units. Nevertheless, in a design-based setting the totals of the survey

variable for a set of domains partitioning the study region are commonly estimated by traditional estimators such as the

Horvitz–Thompson estimator in the case of finite populations or the Monte-Carlo estimator in the case of continuous

populations or by related estimators exploiting the information of auxiliary variables. That necessarily gives rise to

different total estimates with respect to those achieved from the resulting maps as the sum of the interpolated values within

domains. To obtain non-discrepant results, a harmonization of maps is here suggested, in such a way that the resulting

totals arising from maps coincide with those achieved by traditional estimation. The capacity of the harmonization

procedure to maintain consistency is argued theoretically and checked by a simulation study performed on some real

populations.

Keywords Inverse distance weighting interpolation � Horvitz–Thompson estimator � Monte Carlo estimator �
Simulation study

1 Introduction

Spatial phenomena frequently need detailed information

especially in natural resources management. Therefore,

mapping becomes crucial for the understanding of spatial

patterns of an interest attribute. The population to be sur-

veyed can be a continuum, a finite collection of areas

portioning a study region, or a finite collection of points

spread throughout a study region. In most cases, the

available resources render impractical the complete census

of these populations. Therefore, the survey variable is

recorded only for a subset of locations/areas/points and an

estimation criterion is adopted to estimate the values of the

survey variable within non recorded locations/areas/points

and obtain wall-to-wall maps of the interest variable

throughout the whole population.

Usually, mapping is approached in a model-based

framework: locations/area/points where the variable is

recorded are considered as fixed, while values are assumed

to be outcomes of a superpopulation probability model

(e.g., Cressie 1993). As an alternative approach, Fattorini

et al. (2018a, b, 2019) propose mapping continuous pop-

ulations, finite populations of areas and finite populations

of points in a design-based framework. In this scenario,

values are viewed as fixed constants and the probability

distribution of any sample statistic is determined from the

uncertainty entailed by the probabilistic sampling

scheme adopted for selecting locations/areas/points. In

their works, the authors highlighted as any design-based

mapping is challenging. Indeed, when estimating the val-

ues of the survey variable for a single location/area/point,
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either it has been sampled and therefore there is no need for

estimation, or it is unsampled and therefore we do not have

any information for performing estimation. Consequently,

even in a design-based framework, the use of an assisting

model, based on some auxiliary information, seems to be

the only way to fill the lack of sample information. As a

solution, Fattorini et al. (2018a, b, 2019) considered as

assisting model the well-known Tobler’s first law of

geography, i.e., locations/areas/points close in space tend

to have more similar values than those that are far apart

(Tobler, 1970). Accordingly, the authors proposed the

adoption of the so-called inverse distance weighting

interpolator (IDW) (e.g., Henley 1981) and determined the

conditions ensuring IDW design-based unbiasedness and

consistency.

Nevertheless, it should be acknowledged that frequently,

as it occurs for example in forest inventories, estimation of

totals and averages of interest attributes for a set of

domains partitioning the study region is traditionally per-

formed from a design-based perspective adopting the

Horvitz–Thompson (HT) estimator in the case of finite

populations or the Monte-Carlo estimator in the case of

continuous populations or some modifications able to

exploit auxiliary information (e.g., Särndal et al. 1992,

chapter 6).

However, total estimates for these domains can be

achieved also as totals or integrals of the IDW interpola-

tions within. Obviously, the two resulting sets of estimates

will differ. Therefore, the aim of this work is to harmonize

IDW maps by rescaling the interpolated values in such a

way that totals or integrals of single estimates within

domains will match the traditional design-based estimates,

avoiding unsuitable discrepancies in the final results, that

may be perplexing especially in a report phase. It is worth

noting that the harmonization procedure is not introduced

to improve the design-based performance of the IDW

interpolation, but just to avoid discrepancies of the total

estimates achieved from maps with those achieved from

traditional methods. Therefore, the capacity of the har-

monization procedure to maintain the design-based con-

sistency ensured by the original IDW interpolation has

been the main concern. Accordingly, the main target of this

paper is to theoretically prove the harmonization consis-

tency and to check it empirically by simulations.

Because averages are achieved as totals divided by the

size of the study region in continuous populations or by

totals divided by the population size in finite populations of

areas or points, and because these quantities must neces-

sarily be known to perform mapping, harmonization with

respect to totals or averages are equivalent from a statis-

tical point of view. Moreover, regarding the types of

populations considered for harmonization, it should be

noticed that for point populations over large study regions

(e.g., plants, shrubs, or trees), the list and locations of

population units are not available. As consequence, maps

of these populations are precluded. The sole cases in which

mapping is possible occur for forest stands located on

surfaces of limited size (few hectares) in which 3P sam-

pling can be performed. Indeed, in these cases it becomes

possible to visit (and then to locate and list) all the trees by

a team of experts and to give predictions of the survey

variable for each tree, that is a necessary step to perform 3P

sampling (Gregoire and Valentine 2008). However, in most

of these cases, the principal aim is the estimation of the

total timber volume, while mapping is less urgent: this is

due to the small size of the stand and also because the

predictions from a crew of experts are likely to well depict

the distribution of the timber volumes throughout the stand.

For these reasons, harmonization in finite populations of

points is not considered in the paper.

The paper is organized as it follows: in Sect. 2 some

preliminary results on design-based mapping of continuous

populations and finite populations of areas are given. Then,

the procedures for harmonizing IDW maps are described in

Sect. 3 and 4 where the design-based consistency of the

harmonized maps is theoretically proven, and a pseudo-

population bootstrap estimator of map precision is pro-

posed. In Sect. 5 a simulation study is performed on a set

of real populations to empirically check the capacity of the

harmonization procedure in maintaining the consistency of

the resulting maps. Concluding remarks are reported in

Sect. 6.

2 Preliminary results on design-based IDW
interpolation

Consider a study region A, that is supposed to be a con-

nected and compact set of R2, and let f be a bounded

measurable function related to the values of a survey

variable Y and defined on a subset B � A. Moreover, let

k � k be a norm in R2 and / : ½0;1Þ ! Rþ be a nonin-

creasing continuous distance function on ð0;1Þ, with

/ 0ð Þ ¼ 0 and

lim
d!0þ

/ dð Þ ¼ 1: ð1Þ

A widely applied class of distance functions satisfying

(1) is the class of negative powers of order a, given by

/ dð Þ ¼ d�a; a[ 0 ð2Þ

(e.g., Gong et al. 2014; Noori et al. 2014; Bărbulescu

et al. 2021). The choice of (2) is particularly appealing

owing to its simplicity and because of the straightforward

interpretation of the a parameter. Indeed, as showed in the

next subsections, the IDW interpolator is a convex
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combination of the sample values, with weights propor-

tional to the values of the distance function /. Therefore,
negative powers of distances obviously give less weight to

sample values further away from the location where

interpolation is performed with a that plays the role of the

smoothing parameter, i.e., for smaller values of a, the

interpolated map becomes smoother, till, in the limiting

case of a ¼ 0, the map is constant as the interpolated

values are all equal to the sample mean. On the other hand,

when a becomes larger and larger, the estimated map

becomes rougher and rougher till, for a approaching

infinity, the IDW interpolator reduces to the well-known

nearest neighbour (NN) interpolator (Fattorini et al. 2021).

Depending on the features of the spatial populations, the

IDW mapping of the interest attribute is performed in the

following two settings.

2.1 Continuous populations

B coincides with A and f ðpÞ is the value or the density of

the survey variable Y at p 2 B. Therefore, mapping

necessitates the knowledge of f ðpÞ for each p 2 B. To this

purpose, let P1; . . .;Pn be n random variables with values in

B that represent the n locations selected from B by means

of a probabilistic sampling scheme. Then, in accordance

with Fattorini et al. (2018a), if the existence of the con-

tinuous probability density function of ðP1; . . .;PnÞ is

assumed, for a fixed a, the IDW interpolator of f ðpÞ is

almost certainly equal to

bf a pð Þ ¼
X
n

i¼1

wi;a pð Þf Pið Þ; p 2 B ð3Þ

with weights that under the distance function (2) turn out to

be

wi;a pð Þ ¼ kPi � pk�a

Pn
h¼1 kPh � pk�a ; i ¼ 1; . . .; n:

For a ! 1 the interpolator (3) reduces to the NN

interpolator, that is almost certainly equal to

bf1 pð Þ ¼ f PNN pð Þ
� �

ð4Þ

where PNNðpÞ ¼ argmini¼1;...;nkPi � pk. In this case the

resulting map is a surface piecewise constant on the Vor-

onoi cells around the sampled locations (Fattorini et al.

2021).

2.2 Finite populations of areas

A is partitioned into a finite population U of N spatial units

a1; . . .; aN of extents k1; . . .; kN . In this case B is the set of

centroids b1; . . .; bN of the areas and yj is the amount of the

survey variable Y within aj. Therefore, mapping

necessitates the knowledge of yj for each j 2 U. However,

since the area extents are usually known, knowledge of the

yj s is equivalent to the knowledge of densities f j ¼
f bj
� �

¼ yj=kj for each j 2 U. Accordingly, if S denotes the

set of labels identifying the selected areas, then in accor-

dance with Fattorini et al. (2018b), for a fixed a, the IDW

interpolator of f j is given by

bf j;a ¼ Zjf j þ ð1� ZjÞ
X

i2S
wij;af i; j 2 U ð5Þ

where Zj is the random variable equal to 1 if j 2 S and

equal to 0 otherwise, with weights that under the distance

function (2) turn out to be

wij;a ¼
kbi � bjk�a

P

h2S kbh � bjk�a ; i 2 S:

For a ! 1 the interpolator (5) reduces to the NN

interpolator

bf j;1 ¼ Zjf j þ
ð1� ZjÞ
CardðHjÞ

X

i2Hj

f i; j 2 U ð6Þ

where Hj ¼ i : kbi � bjk ¼ mini2Skbh � bjk
� �

is the set

of centroids in the sample that are nearest to bj. Indeed,

contrary to the case of continuous populations, in the case

of finite populations of areas the nearest neighbours of an

area may be more than 1 as, for example, in the case of

populations of regular polygons such as pixels (Fattorini

et al. 2021).

Once the bf j;a s are achieved, the interpolation of the yj s

is simply given by byj;a ¼ kjbf j;a for j 2 U. However, the

interpolation of densities is more suitable for working in

the asymptotic scenario considered by Fattorini et al.

(2018b, 2021) in which the kj s decrease and then the yj s

approach zero.

2.3 Consistency conditions

The asymptotic properties of the IDW interpolators (3) and

(5) are derived in Fattorini et al. (2018a, b), respectively,

while those of their NN counterparts (4) and (6), achieved

for a ! 1, are derived in Fattorini et al. (2021). Without

going into the technical details provided in those papers,

for both the population settings, the design-based unbi-

asedness and consistency of IDW and NN interpolators

concern: i) a sort of smoothness of the function f onto the

study region with jumps that occur in sub-sets of measure

0; ii) when dealing with finite populations of areas, the

regularities in the area shapes; iii) the capacity of the

sampling design to asymptotically achieve a spatial balance

of the selected locations/areas; iv) the use of negative

power distance functions with a[ 2.
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It is worth noting that the four conditions seem to match

most real situations encountered in environmental surveys.

Indeed, the smoothness assumption i) is very common and

it is at the basis of most interpolation techniques (e.g.,

Cressie 1993, Sect. 3.1). Moreover, assumption i) is also

reasonably valid in many natural scenarios where the

density of an attribute changes smoothly throughout space

(continuity) and when it changes abruptly, that usually

occurs along borders delineating variations in the charac-

teristics of the study region (e.g., forest-meadows).

Therefore, borders may be realistically approximated by

curves well approaching the theoretical condition of dis-

continuity over a region of zero measure. Regarding

assumption ii) concerning the regularity of the shape of

areas, it is ensured by the fact that in most cases, especially

in forest and vegetation surveys, areas are regular poly-

gons. Finally, iii) and iv) actually do not constitute

assumptions because both sampling schemes and distance

functions are chosen by the user. In particular, as empha-

sized in Sect. 3, the asymptotic spatial balance required by

iii) is ensured under the schemes usually applied in envi-

ronmental surveys.

2.4 Data-driven choice of a

Because any value of a[ 2, including a ¼ 1, ensures the

design-based consistency of the IDW interpolation, Fat-

torini et al. (submitted) propose to choose a, that in this

framework plays the important role of a smoothing

parameter, by means of a data driven procedure. In par-

ticular, the authors propose the use of the leave-one-out

cross validation (LOOCV) that constitutes an intuitive and

widely applied technique in spatial interpolation (e.g.,

Giraldo et al. 2011; Ignaccolo et al. 2014; Montanari and

Cicchitelli 2014).

LOOCV consists in removing one location/area at a time

from the sampled ones, interpolating the value or density of

the survey variable at the removed location/area using all

other locations/areas in the sample and then repeating this

process for each location/area in the sample. The interpo-

lated values at each sample location/area are then com-

pared with the actual values minimizing the sum of squared

differences.

Accordingly, in the case of continuous populations, a is

selected to minimize

SSD að Þ ¼
X
n

i¼1

bf �i;a Pið Þ � f Pið Þ
h i2

ð7Þ

where bf �i;a Pið Þ is the IDW interpolator of f Pið Þ
achieved by means of (3) or (4) from the sample of n� 1

locations obtained deleting the sample location Pi.

Similarly, in the case of finite populations of areas, a is

selected to minimize

SSD að Þ ¼
X

i2S
ðbf �i;a � f iÞ

2 ð8Þ

where bf �i;a is the IDW interpolator of f i achieved by

means of (5) or (6) from the sample of n� 1 areas obtained

deleting the area i 2 S. In the following, the IDW inter-

polators with a chosen by means of LOOCV are denoted

by bf
ba
ðpÞ for each p 2 B in the case of continuous popu-

lations or by bf
j;ba

for each j 2 U in the case of finite pop-

ulations of areas and are referred to as data-driven IDW

(DD-IDW) interpolators.

Because ba is chosen from sample data instead of being

fixed in advance, it is a random variable whose presence

may, in principle, increase the variability of the DD-IDW

interpolators and may preclude their consistency. Fattorini

et al. (submitted) broad the consistency results achieved for

IDW interpolators proving the consistency of the DD-IDW

under the same asymptotic scenarios.

2.5 Bootstrap estimation of precision

Regarding the estimation of the precision of the DD-IDW

interpolators, Fattorini et al. (submitted) propose the use of

a pseudo-population bootstrap (see e.g., Quatemberg 2015)

based on adopting the DD-IDW map achieved from the

sample as the pseudo-population from which M bootstrap

samples are re-sampled using the same scheme adopted to

select the original sample and then achieving as many DD-

IDW bootstrap maps from these samples.

Accordingly, in the case of continuous populations, let

bf
ba
ðBÞ ¼ bf

ba
pð Þ; p 2 B

n o

be the DD-IDW map based on

the sample values f ðP1Þ; . . .; f ðPnÞ. Then, for each p 2 B,

the pseudo-population bootstrap estimator of the root mean

squared error (RMSE) of bf
ba
ðpÞ is given by

drmse
�
M pð Þ ¼ 1

M

X
M

m¼1

bf
�
ba

�
m
pð Þ � bf

ba
pð Þ

h i2

( )1
2

; p 2 B ð9Þ

where P�
1;m; . . .;P

�
n;m are the locations selected in the m-

th bootstrap resampling by means of the scheme adopted to

select the original sample, bf
ba
ðP�

1;mÞ; . . .; bf
ba
ðP�

n;mÞ are the

values at these locations derived from the estimated map

bf
ba
ðBÞ, ba�m is the LOOCV choice of a performed on the

bootstrap sample and bf
�
ba

�
m
pð Þ is the DD-IDW interpolation

at p 2 B based on ba�m.
Similarly, in the case of finite populations of areas, let

bf
ba
ðUÞ ¼ bf

j;ba
; j 2 U

n o

be the DD-IDW map based on the

sample densities f j; j 2 S. Then, for each j 2 U, the pseudo-
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population bootstrap estimator of the RMSE of bf
j;ba

is given

by

drmse
�
j;M ¼ 1

M

X
M

m¼1

bf
�
j;ba

�
m
� bf

j;ba

� �2

( )1
2

; j 2 U ð10Þ

where S�m is the sample of areas selected in the m-th

bootstrap resampling by means of the scheme adopted to

select the original sample, bf
j;ba
; j 2 S�m are the densities in

these areas derived from the estimated map bf
ba
ðUÞ, ba�m is

the LOOCV choice of a performed on the bootstrap sample

and bf
�
j;ba

�
m
is the DD-IDW interpolation of f j, j 2 U, based

on ba�m:
Fattorini et al. (submitted) prove that for large sample

sizes and for a sufficiently largeM, the bootstrap estimators

(9) and (10) tend to be conservative with the ratio of the

expectation of the bootstrap RMSE to the true value that is

bounded by
ffiffiffiffiffi

10
p

. Even if this result may induce to suspect

a large overestimation of the RMSEs, such bound should

be viewed as a threshold limiting possible overestimation.

3 Harmonization with the overall
population total

In environmental and ecological studies, the total of a

survey variable for the whole study region frequently

covers a role of great interest. As typical examples, esti-

mation of the total amount of a pollutant in a lake is crucial

for achieving information on environmental changes in the

surrounding zones (e.g., Greaver et al. 2016), estimation of

the total erosion extent in a region is fundamental for the

management of cultivations (e.g., Kelley, 1990), estimation

of the total carbon storage in a forest is essential for

determining sequestration capacity (e.g., FAO 2010,

Chapter 2).

Once locations or areas are selected by means of a

probabilistic sampling scheme, the population total is

commonly estimated by means of the HT criterion or by

related criteria able to exploit the presence of auxiliary

information. These criteria constitute consolidated, widely

applied strategies as they were unbiased or approximately

unbiased with design-based variances with known analytic

expressions or approximations. Moreover, variances can be

estimated on the basis of those expressions/approximations

(Gregoire and Valentine, 2008).

However, total estimates naturally arise also from the

resulting maps as the integral, in the continuous case, or the

sum, in the discrete cases, of the interpolated values, thus

achieving total estimates that invariably differ from those

achieved by traditional, HT-based techniques. To eliminate

these unsuitable discrepancies, the matching of the two

total estimates can be performed by rescaling the DD-IDW

interpolations of the interest attribute for each location/

area. Accordingly, for continuous populations, the rescaled

DD-IDW map is given by

~f
ba
pð Þ ¼

bT

bT
ba

bf
ba
pð Þ; p 2 B ð11Þ

while, for finite populations of areas, the rescaled DD-

IDW map is given by

~f
�
j;ba ¼

bT

bT
ba

bf
j;ba
; j 2 U ð12Þ

respectively, where, in both cases, bT denotes the total

estimate obtained by means of a commonly adopted HT-

based technique and bT
ba
denotes the total estimate obtained

from the resulting DD-IDW map.

3.1 Harmonization for continuous populations

In the case of continuous populations, the spatial total can

be expressed as

T ¼
Z

B

f pð Þdp ð13Þ

(see e.g., Stevens 1997; Gregoire and Valentine 2008,

Chapter 10), while its design-based estimation bT can be

obtained extending the HT estimator to the continuous case

bT ¼
X
n

i¼1

f Pið Þ
p Pið Þ ð14Þ

where pðPiÞ denotes the strictly positive inclusion den-

sity function on B at the sample locations Pi ði ¼ 1; . . .; nÞ
(see e.g., Cordy, 1993).

Because of the integral representation (13), the estima-

tion of T may be approached as a Monte Carlo integration.

Interestingly, the most common Monte Carlo integration

methods such as crude Monte Carlo integration, modified

Monte Carlo integration and random grid Monte Carlo

integration are equivalent to Uniform Random Sampling

(URS), Tessellation Stratified Sampling (TSS) and Sys-

tematic Grid Sampling (SGS), respectively, that constitute

the most common sampling schemes adopted in environ-

mental surveys for continuous populations (e.g., Barabesi

2003). In these cases, the estimator (14) reduces to

bT ¼ kðBÞ
n

X
n

i¼1

f ðPiÞ: ð15Þ

Consistency of (15) under URS, TSS and SGS has been

proven by supposing a sequence of designs, each of them
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selecting an increasing number of locations. In particular,

the relative efficiency of TSS with respect to URS has been

proven for finite samples, also proving that efficiency

approaches infinity as the sample size increases because

TSS variance goes to 0 more quickly than under URS

(Barabesi and Franceschi 2011; Barabesi et al. 2012, 2015).

Moreover, consistency of (15) under SGS has been proven

by Fattorini et al. (2020).

On the other hand, from the resulting DD-IDW map, the

total estimate turns out to be

bT
ba
¼

Z

B

bf
ba
pð Þdp ¼

X
n

i¼1

f Pið Þ
Z

B

w
i;ba

pð Þdp: ð16Þ

For a fixed and under the same asymptotic scenario and

the same schemes (URS, TSS and SGS) that ensure the

design-based consistency of (15), Fattorini et al. (2018a)

prove the design-based consistency of the IDW estimator

bf aðpÞ that, in turn,—owing to the Lebesgue dominated

convergence Theorem – entails the consistency of the

integral bT a ¼
R

B

bf a pð Þdp to the true total T . Therefore,

stated the consistency of the DD-IDW interpolator bf
ba
ðpÞ

under the same asymptotic scenario, that also entails the

consistency of (16).

Joining the two consistency results for the estimators

(15) and (16), the rescaling constant bT= bT
ba

in Eq. (11)

obviously converges to 1, in such a way that the harmo-

nized interpolator ~f
ba
pð Þ converges to the DD-IDW inter-

polator bf
ba
pð Þ. That proves consistency of the harmonized

interpolator (11) for continuous populations under URS,

TSS and SGS.

3.2 Harmonization for finite populations
of areas

In the case of finite populations of areas, the population

total can be expressed as

T ¼
X

j2U
yj ð17Þ

while its design-based estimation can be obtained by

means of the HT estimator

bT ¼
X

j2S

yj
pj

ð18Þ

where pj denotes the first-order inclusion probability of

the area j induced by the sampling scheme adopted to

select areas. As the extents of areas partitioning the study

region decrease in such a way that their number and sample

size increase, Fattorini et al. (2020) derived conditions

ensuring design-based consistency of (18). In particular,

they proved that consistency conditions are satisfied when

Simple Random Sampling Without Replacement

(SRSWOR) and One Per Stratum Sampling (OPSS), are

adopted. Moreover, they proved consistency also under

Systematic Sampling (SYS), that however necessitates

further assumptions.

On the other hand, from the resulting DD-IDW map, the

total estimate turns out to be

bT
ba
¼

X

j2U
kjbf j;ba : ð19Þ

For a fixed and the same asymptotic scenario and the

same schemes (SRSWOR, OPSS and SYS) that ensure

consistency of (18), Fattorini et al. (2018b) prove the

design-based consistency of the IDW estimator bf j;a that, in

turn—owing to the Result B.1, Appendix B of that paper –

entails the consistency of bT a ¼
P

j2U kjbf j;a to the true total

T . Therefore, stated the consistency of the DD-IDW

interpolator bf
j;ba

under the same asymptotic scenario, that

also entails the consistency of (19).

Joining the two consistency results for the estimators

(18) and (19), the rescaling constant bT= bT
ba

in Eq. (12)

obviously converges to 1, in such a way that the harmo-

nized interpolator ~f
j;ba

converges to the DD-IDW interpo-

lator bf
j;ba
. That proves consistency of the harmonized

interpolator (12) for finite populations of areas under

SRSWOR, OPSS and SYS.

3.3 Bootstrap estimation of precision

Regarding the estimation of the precision of the harmo-

nized interpolators, because harmonization is performed

from sample data, rescaling the DD-IDW interpolations by

means of the ratio bT= bT
ba
involves uncertainty that must be

accounted in the bootstrap procedure. Therefore, in the

case of continuous population, the bootstrap RMSE esti-

mator (9) is changed into

~rmse�M pð Þ ¼ 1

M

X
M

m¼1

~f
�
ba

�
m
pð Þ � bf

ba
pð Þ

h i2

( )1
2

; p 2 B ð20Þ

where ~f
�
ba

�
m
ðpÞ is the harmonized counterparts of bf

�
ba

�
m
ðpÞ

achieved rescaling bf
�
ba

�
m
ðpÞ by the ratio bT

�
= bT

ba
�
m

where bT
�

and bT
ba

�
m

are the total estimates (15) and (16) achieved from

the bootstrap sample values bf
ba
ðP�

1;mÞ; . . .; bf
ba
ðP�

n;mÞ.
In the case of finite populations of areas, the bootstrap

RMSE estimator (10) is changed into
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~rmse�j;M ¼ 1

M

X
M

m¼1

~f
�
j;ba

�
m
� bf

j;ba

� �2

( )1
2

; j 2 U ð21Þ

where ~f
�
j;ba

�
m

is the harmonized counterparts of bf
�
j;ba

�
m

achieved rescaling bf
�
j;ba

�
m
by the ratio bT

�
= bT

ba
�
m

where bT
�
and

bT
ba

�
m

are the total estimates (18) and (19) achieved from the

bootstrap sample values bf
j;ba
; j 2 S�m.

4 Harmonization by domains

It frequently occurs that total estimates of an interest

attribute are also required for D subpopulations partitioning

the entire population, usually referred to as domains (e.g.,

Särndal et al. 1992 Sect. 10.3). For example, a survey

region may be divided into D domains by administrative

bounds (e.g., regions, counties, municipalities) and we

could be interested, besides to the mapping and to the

overall total of an attribute, to its sub-totals within the

domains.

In the case of continuous populations, denote by

B1; . . .;BD the D subsets partitioning B, whose totals are of

interest. In this case, estimation of totals within domains

can be performed simply defining, for each domain

d ¼ 1; . . .;D, the function.

f ðdÞ pð Þ ¼ f pð Þ if p 2 Bd

0 otherwise

	

;

in such a way that the total for the domain d, say T ðdÞ, is

obtained as in (13) by substituting f pð Þ with f ðdÞ pð Þ. Sim-

ilarly, the Monte Carlo estimator for the d-th domain, say

bT ðdÞ, can be performed as in (15), once again substituting

f pð Þ with f ðdÞ pð Þ. On the other hand, from the resulting

DD-IDW map, the total estimate for each domain

d ¼ 1; . . .;D, say bT
baðdÞ, turns out to be as in (16) with the

integral extended to Bd, instead of the whole B. Therefore,

for continuous populations, the rescaled map that ensures

the matching of total estimates for each domain as well as

the matching of the overall total estimates is given by

~f
ba
pð Þ ¼

bT ðdÞ
bT
baðdÞ

bf
ba
pð Þ; p 2 Bd; d ¼ 1; . . .;D: ð22Þ

Consistency of (22) arises, mutatis mutandis, from the

same consideration performed in Sect. 3.1.

In the case of finite populations of areas, denote by

U1; . . .;UD the D subsets of areas partitioning U, whose

totals are of interest. In this case, estimation of totals within

domains can be performed simply defining, for each

domain d ¼ 1; . . .;D, the values.

f jðdÞ ¼
f j ifj 2 Ud

0 otherwise

	

;

in such a way that the total for the domaind, sayT ðdÞ, is
obtained as in (17) by substituting f j withf jðdÞ. Similarly,

the HT estimator for the d-th domain, say bT ðdÞ, can be

performed as in (18), once again substituting f j with f jðdÞ.

On the other hand, from the resulting DD-IDW map, the

total estimate for each domaind ¼ 1; . . .;D, say bT
baðdÞ, turns

out to be as in (19) with the summand extended toUd,

instead of the wholeU. Therefore, for finite populations of

areas, the rescaled map ensuring the matching of total

estimates for each domain as well as the matching of the

overall total estimates is given by

~f
j;ba

¼
bT ðdÞ
bT
baðdÞ

bf
j;ba
; j 2 Ud; d ¼ 1; . . .;D: ð23Þ

Consistency of (23) arises, mutatis mutandis, from the

same consideration performed in Sect. 3.2.

Finally, regarding the bootstrap RMSE estimation, in the

case of continuous populations it is performed by means of

Eq. (20) substituting f pð Þ with f ðdÞ pð Þ, and in the case of

finite populations of areas it is performed by means of

Eq. (21) substituting f j with f jðdÞ.

5 Simulation studies

For each population setting, a simulation study is per-

formed to empirically check if and how much the harmo-

nization procedure deteriorates the performance of DD-

IDW maps, as well as to check the rate of convergence of

the harmonized maps to the original ones.

5.1 Populations and sampling

As to continuous populations, the survey region considered

for the simulation was a quadrat region of 90,000 ha

located in North-Western Tuscany (Central Italy). The

population values to be mapped were the precipitations

(mm) occurred between 3rd January 2021 and 3rd February

2021, that were artificially achieved by means of an ordi-

nary kriging prediction performed from the values recorded

on 32 rain gauge stations that were present in the survey

region. The population average was Y ¼ 299 mm for the

whole region (see Fig. 1). Moreover, the region was par-

titioned into D ¼ 2; 4; 8 domains of equal sizes, as depicted

in Fig. 2. Precipitation averages (in mm) within the two

domains were Y ð1Þ ¼ 306 and Y ð2Þ ¼ 293, precipitation

averages within the four domains were Y ð1Þ ¼ 255,

Y ð2Þ ¼ 361, Y ð3Þ ¼ 323, and Yð4Þ ¼ 257, precipitation
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averages within the eight domains were Yð1Þ ¼ 219,

Y ð2Þ ¼ 227, Y ð3Þ ¼ 300, Y ð4Þ ¼ 423, Y ð5Þ ¼ 282,

Y ð6Þ ¼ 319, Y ð7Þ ¼ 341, and Yð8Þ ¼ 281.

Sampling was performed by selecting n ¼
16; 36; 64; 100 locations on the quadrat region by means of

URS, TSS and SGS, i.e., selecting n locations completely

at random (URS), partitioning the quadrat into n sub-

quadrats of equal size and selecting a location at random

within each of them (TSS), or selecting one location at

random in one of them and then repeating the location in

the others (SGS).

As to finite populations of areas, the survey region

considered for the simulation was a rectangle of about

212 ha located in Calabria (Southern Italy). Three popula-

tions of N ¼ 250; 1000; 4000 areas were considered by

partitioning the region into as many rectangles of size

8464, 2116 and 529 m2, respectively. The population val-

ues to be mapped were the growing stock volumes (m3/ha)

within the areas that were artificially achieved by means of

a random forest imputation technique (see Chirici et al.

2020 for details) from the ground data recorded in the

2000–2007 during the Italian National Forest Inventory

(Fattorini et al. 2006). The population total resulted T ¼
63,524.6 m3 for the whole region (see Fig. 3). Moreover,

the region was partitioned into D ¼ 2; 4; 8 domains con-

stituted by an equal number of areas, as depicted in Fig. 4.

Totals (in m3) within the two domains were T ð1Þ ¼
34; 915:5 and Tð2Þ ¼ 28; 609:1, totals within the four

domains were T ð1Þ ¼ 16; 830:6, Tð2Þ ¼ 18; 048:9,

T ð3Þ ¼ 12; 634:2, and T ð4Þ ¼ 15; 974:8, totals within the

eight domains were Tð1Þ ¼ 8891:6, Tð2Þ ¼ 10; 553:7,

T ð3Þ ¼ 6276:9, T ð4Þ ¼ 8755:0, Tð5Þ ¼ 9329:9,

T ð6Þ ¼ 6350:5, Tð7Þ ¼ 6283:8, and T ð8Þ ¼ 7083:3.

Sampling was performed by selecting samples of n ¼
N=10 areas by means of SRSWOR, OPSS and SYS, i.e.,

selecting n areas at random without replacement

(SRSWOR), partitioning the populations into n blocks of

2� 5 contiguous areas and selecting an area at random

within each of them (OPSS), or selecting one area at ran-

dom in one block and then repeating it in the others (SYS).

5.2 Simulation

For each combination of population, sampling scheme and

sample size, sampling was replicated R ¼ 10; 000 times. At

each simulation run, the DD-IDW map was obtained by

Fig. 1 Precipitations (mm) between 3rd January 2021 and 3rd

February 2021 in a quadrat region of North-Western Tuscany (Central

Italy)

Fig. 2 Partition of the region in

Fig. 1 into D ¼ 2; 4; 8 domains

of equal size

Fig. 3 Maps of the growing stock volumes in a rectangular region located in Calabria (Southern Italy) partitioned into three populations of 250,

1,000 and 4,000 areas
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means of the LOOCV selection of a, that was performed by

minimizing (7) or (8), for the continuous population or

finite populations of areas, respectively, starting with a ¼ 3

and increasing a by one. Since for quite large values of a
the IDW interpolator is practically indistinguishable from

the NN interpolator, if the minimum of (7) or (8) was

reached for a ¼ 21, the NN interpolator was used. More-

over, the bootstrap RMSE estimators (9) or (10) were

adopted in the case of the continuous population and finite

populations of areas, respectively, computed by means of

M ¼ 1000 bootstrap samples. Then, at each simulation run,

harmonization was performed by estimating the population

totals by means of the traditional estimators (15) or (18) in

the case of the continuous populations or finite populations

of areas, respectively, by estimating the totals from the

resulting maps by means of estimators (16) or (19) in

accordance with the two types of populations, and then

harmonizing the DD-IDW by rescaling them by means of

Eq. (11) for the continuous population and by means of

Eq. (12) for finite populations of areas. Finally, domain

partitions were considered for each population as depicted

in Figs. 2 and 4 and harmonization was performed for each

of the D ¼ 2; 4; 8 domains as described in Sect. 4.

Regarding the estimation of precision for the harmonized

maps, the bootstrap RMSE estimators (20) or (21) were

adopted for the continuous population or the finite popu-

lations of areas, respectively, by means of M ¼ 1000

bootstrap samples.

5.3 Performance indicators

In the case of the continuous population, interpolation was

performed on a regular grid of 100� 100 within the

quadrat region of Fig. 1. Let bf r pk;l
� �

and ~f r pk;l
� �

be the

DD-IDW and the harmonized interpolations of the con-

tinuous population computed at the node pk;l of the grid

(k; l ¼ 1; . . .; 100) at the r simulation run, and let

drmse
�
r pk;l
� �

and ~rmse�r pk;l
� �

be the bootstrap RMSE esti-

mates from Eqs. (9) and (20), respectively. Based on the

R ¼ 10; 000 runs, the absolute bias (AB)

ABk;l ¼
1

R

X
R

r¼1

bf r pk;l
� �

� f pk;l
� �































ð24Þ

the RMSE

RMSEk;l ¼
1

R

X
R

r¼1

bf r pk;l
� �

� f pk;l
� �

h i2

( )1=2

ð25Þ

and the bootstrap ratio (BORAT)

BORATk;l ¼
1
R

PR
r¼1 drmse

�
r pk;l
� �

RMSEk;l
ð26Þ

were computed for the DD-IDW interpolation at each node

pk;l for k; l ¼ 1; . . .; 100. The same indicators were com-

puted for the harmonized interpolation replacing bf r pk;l
� �

with ~f r pk;l
� �

in Eqs. (24) and (25) and replacing

drmse
�
r pk;l
� �

with ~rmse�r pk;l
� �

in Eq. (26).

Similarly, in the case of finite populations of areas, let

bf j;r and ~f j;r be the DD-IDW and the harmonized interpo-

lations for the area j in the finite populations of areas at the

r simulation run, and let drmse
�
j;r and ~rmse�j;r be the bootstrap

RMSE estimates from Eqs. (10) and (21), respectively.

Based on the R ¼ 10; 000 runs, the AB

ABj ¼
1

R

X
R

r¼1

byj;r � yj































ð27Þ

the RMSE

RMSEj ¼
1

R

X
R

r¼1

byj;r � yj
� �2

( )1
2

ð28Þ

and the BORAT

BORATj ¼
1
R

PR
r¼1 drmse

�
j;r

RMSEj
ð29Þ

were computed for each area j. The same indicators

were computed for the harmonized interpolation replacing

bf j;r with ~f j;r in Eqs. (27) and (28) and replacing drmse
�
j;r

with ~rmse�j;r in Eq. (29).

Fig. 4 Partition of the rectangular region in Fig. 3 into D ¼ 2; 4; 8 domains constituted by an equal number of areas
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Finally, let bT r and bT
ba;r

be the total estimates (overall or

within a domain) achieved at the r simulation run by means

of the HT or Monte Carlo estimators and from the DD-

IDW maps, respectively. The Monte Carlo distribution of

the correction factors

RATIOr ¼
bT r

bT
ba;r

r ¼ 1; . . .;R ð30Þ

was considered to evidence the level of matching

between the DD-IDW and the harmonized maps.

5.4 Results

Tables SI1 and SI6 in the Online Resource file contain the

minima, the averages, and the maxima of ABs, RMSEs,

and BORATs arising from the DD-IDW interpolation for

each population, sampling scheme and sample size. Fig-

ures SI1-SI6 in the Online Resource file show the spatial

patterns of these performance indicators. The same indi-

cators are reported in Tables SI2 and SI7 for the harmo-

nized interpolation with respect to the overall total.

Figures showing the spatial pattern of these indicators are

not reported because they resulted quite similar to those

achieved using the DD-IDW interpolation. Moreover, for

each population, sampling scheme and sample size,

Tables SI3 and SI8 report minima, averages, and maxima

of the Monte Carlo distributions of the correction factor

(30). Finally, Tables SI4 and SI9 contain the minima, the

averages, and the maxima of ABs, RMSEs, and BORATs

arising when harmonization is performed with respect to

the total estimates within D ¼ 2; 4; 8 domains, while

Tables SI5 and SI10 report minima, averages, and maxima

of the pooled Monte Carlo distributions of the RxD cor-

rection factors (30) in presence of D ¼ 2; 4; 8 domains.

Simulation results show that harmonized and DD-IDW

maps are comparable in terms of ABs, RMSEs and BOR-

ATs for all the populations and sampling schemes, sug-

gesting that harmonization can be performed without

relevant loss in accuracy, precision, and bootstrap perfor-

mance. Furthermore, in all the situations, the correction

factor (30) quickly approaches to 1 as the sample sizes

increase. However, the RMSEs of the harmonized maps

tend to increase as the number of domains increases. This

is an expected result due to the fact that, when the number

of domains is large and their sizes decrease, the number of

selected units within domains becomes smaller and smal-

ler, thus invariably reducing the precision of the total

estimates from which harmonization is performed.

6 Final remarks

The recent papers by Fattorini (2018a, 2018b, 2019) pro-

pose a novel approach for mapping continuous populations

or finite populations of areas and points in a design-based

framework, avoiding the complex task of modelling the

surfaces or the finite populations to be mapped. However,

in the design-based approach, an unresolved problem takes

rise. Because totals and averages throughout the whole

survey region or within domains are traditionally achieved

by the HT or related criteria, these estimates invariably

differ from the estimates achieved by the resulting maps.

For avoiding these unsuitable discrepancies, that would

appear awkward especially in a reporting phase, we here

propose to rescale the resulting maps in such a way that the

total or average estimates arising from maps will match the

traditional estimates. We also prove the asymptotic con-

vergence of the two maps, i.e., the convergence to one of

the rescaling factors. That is unambiguously confirmed by

the simulation study, as the Monte Carlo distributions of

the rescaling factors quickly approach one as sizes

increase, even for moderately small domains. Therefore, if

we simply look at those results, we may argue that har-

monization is a useless procedure because DD-IDW and

harmonized maps are very similar. However, if we look at

the minima and maxima of the rescaling factor, reported in

Online Resource file, it is apparent that in some situations,

especially when the estimation of domain totals is

involved, the rescaling constant may vary from about 0.1 to

3.4.

On the other hand, the deterioration of precision of

harmonized maps when domain sizes decrease ought to

warn against an acritical use of harmonization. Obviously,

as the number of domains increases and their extents

become small, the number of sample units available to

perform estimation within domains becomes small and, in

some cases, may be 0. This fact will necessarily introduce

an increase in the variance in the estimator based on the HT

or related criteria. As we cannot trust in these estimates,

harmonization with respect to small domains should be

avoided. These issues are well known in literature as small

area estimation problems, for which an extensive body of

knowledge has emerged recently (see e.g., Rao and Molina,

2015 and references therein).

At the end of this paper it should be pointed out that the

harmonization problem could be completely bypassed if a

model-based mapping was adopted. Indeed, in presence of

spatial autocorrelation and second-order stationarity of the

spatial process that is supposed to generate the population

under study, the kriging methods not only provide the best

linear unbiased mapping but directly provides the best

linear predictor of totals within subareas with no necessity
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of harmonization (e.g. Thompson, 2012, Sect. 20.4). In

addition, a long sequence of alternative model-based

mapping procedures is available, such as sandwich map-

ping (Wang et al. 2013) that is suitable in presence of weak

spatial autocorrelation and spatial heterogeneity. Indeed,

when dealing with some populations, past experience may

have established convincingly that certain types of patterns

are typical for the survey variable. In these cases, as

pointed out by Wang et al. (2012) the patterns can be used

to identify a family of stochastic models (superpopulations)

that are supposed to generate the population under study

for obtaining the most precise possible mapping for a given

amount of sampling effort. Obviously, also in design-based

approach, in which the minimal sufficient statistics is the

unordered set of distinct labelled observations (e.g. Basu

1969), one would like to be able to say what estimator

produces the best mapping. However, because in this case

the minimal sufficient statistic is not complete (Thompson,

2012, Sect. 9.4), one cannot make statements about one

mapping method being best. The lack of completeness of

the minimal sufficient statistic in design-based inference

has been the main reason for lack of optimality results in

this approach. Therefore, one may wonder why to adopt a

design-based mapping with the subsequent necessity of

performing harmonization if that problem disappears in

model-based approaches with also the possibility of

achieving the best mapping.

The contraposition between model-based and design-

based approaches is a deeply debated issue. Drawbacks and

merits of the two approaches are well delineated in both

statistical literature (e.g., de Gruijter and ter Braak, 1990;

Smith 1994, 2001; Little 2004; Thompson, 2012) as well as

in environmental applications (e.g., Schreuder et al. 1993;

Gregoire, 1998; Gregoire and Valentine, 2008; Wang et al.

2013). However, besides the fact that, as emphasized by

Särndal et al. (1992) ‘‘Design-based inference is objective,

nobody can challenge that the sample was really selected

according to the given sampling design. The probability

distribution associated with the design is real, not modelled

or assumed’’, a further advantage of a design-based

approach to mapping includes obtaining consistency of

maps just on the basis of the design adopted to select fairly

representative or balanced samples of locations, requiring

only—as a sort of nonparametric approach—mild

assumptions about the population under study. In our case,

IDW interpolation only requires a sort of smoothness of the

surface to be interpolated with discontinuities that occur in

sub-sets of measure 0 and, when dealing with finite pop-

ulations of areas, regularities in the area shapes. Therefore,

our IDW mapping is applicable to all the populations

sharing these features. Finally, a very practical motivation

is relevant in favour of a design-based approach. As stated

before, in environmental and forest surveys estimation of

totals and averages avoids model-based procedures and is

traditionally performed from a design-based perspective

exploiting well experimented sampling schemes such as

systematic grid sampling and tessellation stratified sam-

pling (see e.g. Tomppo et al. 2010). Therefore, it would

been logically inconsistent to adopt a design-based infer-

ence to perform the estimation of totals while adopting a

model-based inference for mapping. That ultimately

motivates the use of design-based mapping with the sub-

sequent, practical necessity of harmonization.
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