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Abstract—This paper presents results from the SESAR ER3
Domino project. It focuses on an ECAC-wide assessment of
two 4D-adjustment mechanisms, implemented separately and
conjointly. These reflect flight behaviour en-route and at-gate,
optimising given (cost) objective functions. New metrics designed
to capture network effects are used to analyse the results of
a microscopic, agent-based model. The results show that some
implementations of the mechanisms allow the protection of the
network from ‘domino’ effects. Airlines focusing on costs may
trigger additional side-effects on passengers, displaying, in some
instances, clear trade-offs between passenger- and flight-centric
metrics.

I. INTRODUCTION

A major challenge facing ATM architects is understand-
ing the complex interdependencies and coupling of various
components of the system. Predicting how the introduction
of change in one (sub)system will impact others, not only
locally, but downstream and more widely across the system,
is a particular challenge. The ‘Airspace Architecture Study’
[1] flags how the ATM system is comprised of nodes, which
are often operating close to maximum capacity and with-
out appropriately connected resources (including for data).
Problems due to stresses in the system thus often propagate
and “knock it out of optimal flow”. This ‘domino’ effect is
offset, for example, by buffers in schedules, although these
are often insufficient to absorb all of the disturbance(s). The
Study flags the need for “stronger linking between airspace,
operations and technical evolution and measurement of the
impact through simulations factoring in known deployments
...”. It also recommends targeted incentives for “early movers”.
Acceleration of market uptake of the next generation SESAR
technologies and services, to support defragmentation, is, inter
alia, further endorsed in the corresponding ‘Transition Plan’
[2], which identifies three such key operational and technical
measures that need to be implemented in the very short term
(2020 to 2025), to initiate the changes outlined in the Study.
This particular measure will allow different parts of the system
to be implemented at different speeds, but with awareness of
local needs and coherence at the network level.

This project has received funding from the SESAR Joint Undertaking
under grant agreement No. 783206 under the European Union’s Horizon
2020 research and innovation programme. The opinions expressed herein
reflect the authors’ views only. Under no circumstances shall the SESAR Joint
Undertaking be responsible for any use that may be made of the information
contained herein.

The Domino project has developed a platform to assess
the coupling of ATM systems from a flight and passenger
perspective, allowing the ATM system designer to better un-
derstand the relationships between (sub)systems and the nature
of such relationships, which emerge in a given technological
and operational context. It uses metrics from network science
and classical approaches – see [3], for an early review of the
value of non-classical metrics and the need to differentiate
between flight- and passenger-centric indicators. Exploring
several issues outlined in the Airspace Architecture Study
in the context of different (future) operational and stressed
environments, we present in this paper an assessment of
two 4D flight trajectory adjustment mechanisms. The first is
dynamic cost indexing (DCI), whereby a flight is able to adjust
its cruise speed to manage expected delay. The second is wait
for passengers (WFP), whereby a flight can wait at-gate for
late connecting passengers. The conjoint use of DCI and WFP
was studied in operations at a specific hub in previous research
[4]. In this paper, the use of these mechanisms is considered at
the network level. Moreover, different implementations modes
of these mechanisms are explored, at current and advanced
‘levels’. Section II presents the model and its scenarios; Sec-
tion III focuses on the novel indicators developed to capture
the network effects of the mechanisms. Section IV brings these
together in the presentation of the results, whence the paper
closes with conclusions and proposals for future work.

II. MODEL AND SCENARIOS

A. Summary of the model
The Domino model is a new, expanded version of a simu-

lator called ‘Mercury’. Its main features have been presented
in [5]. Mercury is an ECAC-wide microscopic agent-based
model (ABM) comprising the following main agents:

• ‘Flight’: compute iteratively, segment by segment, the
real flight trajectory based on the planned one.

• ‘Airline’: the airline manages its operations by taking
care of passengers (connections, compensation, etc.) and
flights (dispatching, cancellations, slot swapping, etc.);
decisions are based on a cost of delay function, calibrated
with [6]; airlines are part of alliances, used for rebooking
passengers when needed.

• ‘AMAN’: the arrival manager takes care of the sequenc-
ing of flights close to the destination airport.
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• ‘Radar’: follows the flight trajectory and relays important
information to interested parties (AMAN, airline).

• ‘Ground airport’: takes care of the flight before and
after departure; used to sample taxi, turnaround, and pax
connecting times.

Mercury is executed as an event-driven simulator. In ad-
dition to events (e.g., flight pushback), agents also react to
messages from other agents (e.g., a request for rebooking).
Random variables are used for uncertainties such as taxi
times, wind, pax connecting times, turnaround times, and
cancellations, as well as for some non-optimal decision- mak-
ing processes by agents (e.g. selecting the flight plan to be
operated as part of the dispatch process). All distributions are
built on various empirical data. Due to the stochasticity, several
runs of the model are performed for each scenario.

Each airport has an instance of the ‘ground airport’ agent
and the ‘AMAN’. There is one instance of the ‘airline’
agent per individual airline and one ‘flight’ agent per flight.
Passengers typically have only few decisions to make and thus
are not modelled as agents, even though their preferences are
taken into account by the airlines indirectly through a soft cost
based on a logit utility function (calibrated again with [6]). The
results in this paper have been obtained with an early version
of the model, presented in [7]; it will be subsequently refined.

B. Scenarios

The entire ECAC space is modelled considering commercial
flights on 12 September 2014. This includes approximately
27k flights and 3.4M passengers (considering premium and
non-premium ticketed passengers), between 800 airports. This
date was carefully selected to be representative of a high-
traffic, non-disrupted day in 2014, with demand thus similar to
an average day in 2023 (STATFOR baseline forecast). The traf-
fic is based on historical DDR data, schedules and generated
passenger itineraries (see [8] for a detailed description of the
scenario generation), and calibrated using historical data from
CODA and DDR. The main scenarios simulated in Domino
have been presented extensively in [8]. The main variables
considered to generate the scenarios are:

• the system delay: nominal and higher delays (baseline
and stressed scenarios). The nominal delay is based on
historical data on uncertainty and delay (e.g. number
of ATFM regulations) for average days. The stressed
scenario considers degraded days of operations with high
levels of delay by selecting a high number of ATFM
regulations, lower airport capacities and longer en-route
and taxiing operations.

• the technological environment, by defining three mech-
anisms: flight prioritisation (allowing ATFM slot swap-
ping); flight arrival coordination (with different imple-
mentations of E-AMAN); and, 4D trajectory adjustments
(4DTA) (which considers DCI and WFP).

Results from several combinations of these factors have
been obtained and are reported in [7]. In this article, we focus
on the results obtained for the 4DTA mechanism. Three levels

of this mechanism are modelled, considering increasingly
advanced behaviours (‘Level 0’, ‘Level 1’ and ‘Level 2’).

Let us consider the two sub-mechanisms of 4DTA. (i) DCI
considers changing the cruise speed of a flight (cost index) to
manage expected arrival delay, while maintaining the route.
The cost index is defined as the ratio between the time and
fuel costs: CI = (time costs)/(fuel costs). Domino explicitly
estimates the cost of delay considering several factors: non-
passenger costs (flight crew and maintenance), passenger costs
(hard costs (e.g., rebooking, Regulation 261 duty of care)
and soft costs (loss of market share due to dissatisfaction)).
Based on BADA4, an airline is able to estimate the cost
of fuel required to recover some delay. A fixed price per
kg of fuel is used in the model (0.5 EUR/kg). (ii) WFP
rules consider actively delaying outbound flights to wait for
delayed inbound passengers so that they do not miss their
connections. This option is currently seldom used by airlines,
as it impacts the on-time performance of the outbound flights
and, in some cases, waiting for passengers might lead to
outbound flights being regulated. However, when the optimal
solution to minimise the cost of delay is sought, then this
might be a relevant strategy [4]. This could be particularly
important for the last flights of the day where, if passengers
do not make their connection, they will need to be rebooked on
next-day flights, leading to significant (hard and soft) costs for
the airline. The DCI and WFP rules vary across the three levels
of implementation, with the primary goal of Level 0 being to
capture the most common current practices of airline operators.
Levels 1 and 2 explore advanced (future) capabilities. DCI is
implemented as follows across the levels:

• Level 0: The cost index (CI) is calculated before take-
off and is fixed throughout the flight. The CI decision
is based on the departure delay, with delays larger than
15 minutes recovered up to 5 minutes. Whether a flight
intends to recover any delay is decided according to a
linear probabilistic distribution, with delays larger than
60 minutes always recovered. This is a ‘rule of thumb’
which does not explicitly consider expected arrival delay,
cost of fuel and cost of delay.

• Level 1: DCI is reassessed at the top of the climb (TOC),
taking into account the estimated arrival delay. The flight
performs a potential delay recovery by comparing ex-
pected fuel and time costs, and chooses the least costly
option. Note that delay at departure might not represent
delay at arrival due to the existence of buffers.

• Level 2: The DCI assessment and WFP strategies are
coupled via a unified cost function, and the optimal
decision is made before take-off (e.g. waiting for (some)
passengers and then speeding up). DCI is reassessed at
TOC, with the additional possibility of slowing down in
cases where the expected arrival time is more than 15
minutes ahead of the scheduled arrival time, in order to
consider potential fuel savings.

The assessment of the passengers’ status is always per-
formed 5 minutes before the pushback-ready event. The fol-
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lowing WFP strategies have been implemented in the model:
• Level 0: Based on the latest estimate of the at-gate

time for each passenger, a flight decides to wait for any
passenger with a premium ticket, who is expected to be
at-gate no later than 15 minutes after the flight’s expected
pushback time;

• Level 1: A flight decides to wait for passengers weighing
two types of estimated costs: waiting v. not-waiting
cost. The waiting cost includes the cost of delaying a
flight for an additional n minutes due to waiting for
passengers, whereas the not-waiting cost includes all the
costs of having to take care of passengers missing their
connection. A flight chooses the wait time that minimises
the total additional cost;

• Level 2: WFP is performed in conjunction with DCI using
a unified cost function, as explained above.

III. INDICATORS

A. Standard indicators

We first consider a set of largely classical metrics, variously
used in ATM, intended to capture fundamental statistics re-
garding delays and costs (both flights’ and passengers’). Such
metrics are a useful starting point in the model evaluation.
Examples include:

• average departure and arrival delay of all/delayed flights
(with delay ≥ X , where X ∈ {0, 15, 60, 180});

• number of cancelled and delayed flights (on departure or
arrival);

• number of flights delayed due to reactionary delays;
average reactionary delay;

• average passenger delay (with delay ≥ X , where X ∈
{0, 15, 60, 180};

• average cost of compensation, passenger rebooking, duty
of care, excess fuel usage (w.r.t. planned fuel usage).

Statistics have been computed over 100 iterations of the runs
of the model, per scenario. For each indicator, the average, the
first and the third quantile of its distribution over the iterations
are considered. All the cost indicators are expressed in euros.

B. Centrality

In a networked system, such as ATM, centrality is a measure
of the ‘importance’ of a node in terms of its role in connecting
the network. Since the definition of importance depends on
the context, many different metrics have been proposed in the
literature. In Domino, we consider the network of airports and
flights, where flights represent links and are therefore present
only in some time intervals. Studying the centrality of the
nodes of such a network contributes to the understanding of
the impact of the new mechanisms on the whole network.
Two air traffic network types can be considered: the network
formed by the scheduled flights and the network of actual
flights (upon their execution). Centrality metrics can be used
to consider questions such as whether the introduction of a
new mechanism makes the system (or parts thereof) more
robust, in the sense that the actual and scheduled centrali-
ties remain more similar. This would, in fact, indicate that

the mechanism mitigates disruptions in network connectivity.
Existing centrality metrics, however, are not suitable for such
comparisons [5]. The main reason is that most of such metrics
were developed for static and single-layer networks, while
air traffic is naturally described by a temporal, multilayer
network. The network is temporal as links (flights) appear and
disappear, and connections between them are possible only if
the corresponding links are in the right order. The network
is multilayer because flights belong to different alliances (or
single airlines), each constituting a different layer [9].
We therefore proposed two new tailored centrality metrics.
Inspired by the Katz centrality [10], we consider that the
centrality of a node depends on the number of itineraries in
the network having that node as origin (outgoing centrality) or
as destination (incoming centrality). Different from the static
version of the metric, these itineraries (or ‘walks’) must be
time-respecting and also account for the fact that travelling
through a link takes non-zero time, i.e., only itineraries that
can really be travelled should be counted (including airport
transfers, for multi-leg trips). In Katz centrality, itineraries
are weighted according to their length, with longer itineraries
contributing less to the centrality. Two different ways of
weighting itineraries are proposed.

First, ‘Trip centrality’ [9]: an itinerary of n legs outgoing
from (incoming to) an airport contributes αn to the outgoing
(incoming) centrality of that airport, where α < 1 so that
longer itineraries contribute less. Additionally, if the itinerary
comprises flights of different airlines, it contributes less by a
factor εm, where m is the number of changes of layer through
the itineraries, and ε < 1. This accounts for the fact that multi-
airline itineraries are less used by passengers. If ε = 0, these
itineraries are not counted at all. The itineraries considered
by trip centrality are therefore all the possible itineraries that
could be used by passengers (because they are temporally
feasible), weighted more when they have fewer legs and fewer
changes of airline.

Second, ‘Passenger centrality’: each itinerary contributes
to the outgoing or incoming centrality of an airport an
amount which corresponds to the number of passengers on
that itinerary. Therefore, the outgoing passenger centrality
of an airport corresponds to the number of passengers that
depart from that airport (either as their first departure or
taking a flight connection there) and are directed to another
destination, either with a direct flight or with connections. The
incoming centrality of an airport corresponds to the number
of passengers that land in that airport, either as their final
destination or with a further connection.

The damage to the network connectivity due to delays
and cancellations can be estimated as the loss of centrality
between the scheduled and the actual, executed network. For
trip centrality, the centrality in the actual network is computed
by using the actual network structure, which accounts for the
delays and cancellations (see [9] for details). An airport’s
centrality in the actual network is therefore always smaller
than its centrality in the scheduled network. The loss of
outgoing trip centrality of an airport measures the loss of
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potential outgoing itineraries that are not feasible anymore,
therefore quantifying the decrease in the potential to access
the rest of the network from that airport. For passenger cen-
trality, in the actual network only passengers that reach their
destination using their scheduled itinerary are counted. The
actual outgoing passenger centrality of an airport corresponds
to the number of passengers counted in the scheduled outgoing
passenger centrality, who manage to follow their scheduled
itinerary.

If, for example, N incoming passengers miss their connec-
tion in airport i, and are rebooked to another outgoing flight,
airport i will have a loss of outgoing centrality amounting
to N . The same loss would apply if N passengers depart
late from i and miss their next connection at another air-
port. Therefore, the loss of outgoing passenger centrality of
an airport accounts both for the passengers that experience
a disruption in that airport and for those that experience
problems downstream. This is different from the loss of
outgoing trip centrality, which does not account for missed
potential connections in the airport itself. The actual, incoming
passenger centrality of an airport, corresponds to the number
of passengers that were counted in the scheduled incoming
passenger centrality and that manage to follow their scheduled
itinerary up to that airport. Therefore, the loss of incoming
passenger centrality can be interpreted as the damage to airport
i caused by issues upstream. For both types of centrality,
incoming and outgoing, we look at the average centrality loss
to the entire network. Note that for trip centrality, when the
centrality loss is averaged over the entire network, the loss
of incoming centrality equals exactly the loss of outgoing
centrality. In fact, each loss of outgoing centrality corresponds
to an equal loss of incoming centrality at another airport.
Therefore, in this case, we will refer to it as ‘average trip
centrality loss’.

C. Causality

In the ATM system, delays and congestion states propagate
through the system due to the interactions between flights
and the environment. Causality metrics aim to identify the
channels of delay propagation, thus revealing which nodes in
the network are facilitating the spreading process, in particular
by forming subsystems working as amplifying feedback for
delay propagation.

In statistics, detecting a (directional) causal relationship
between two random variables is equivalent to assessing
whether the information on the past states of one variable
helps in forecasting the future state of the other. We here
consider two causality metrics that have been proposed in the
literature, namely Granger causality in mean [11] and Granger
causality in tail [12]. The first causality metric evaluates the
forecasting performance on average, thus weighting equally
both ‘small’ and ‘large’ values in assessing the statistical
significance of the past information of one state in forecasting
the other. Sometimes, however, we are interested in restricting
the causality analysis only on the dependence between ‘large’
states. The proposition is that departure delays that are small

with respect to flight time are probably not highly relevant,
as they are typically easily absorbed by buffers. Hence, the
second causality metric focuses only on the prediction of more
‘extreme’ events, where ‘extreme’ refers to events which are
less likely to be observed (in probabilistic terms), e.g., high
congestion. Specifically, given two random variables X and
Y , whose states at different times are captured by two time
series, we say that:

• Y ‘Granger-causes in mean’ X if we reject at some
confidence level the null hypothesis that the past values
of Y do not provide statistically significant information
about future values of X by assuming the linear VAR(p)
process as the predictive model (see [11] for further
details on the implementation of the method);

• Y ‘Granger-causes in tail’ X if we reject at some
confidence level the null hypothesis that the past extreme
values of Y , defined as states falling in the (right) tail of
the distribution1, do not provide statistically significant
information about future extreme states of X (for further
information see [12]).

In the context of the Domino project, we consider the
network of airports and flights, where airports represent the
nodes of the network and a (directional) link is present if
there exists a causal relationship between two nodes: each
node described by the state of delay of the airport, i.e., the
average delay2 of flights taking off from that airport within
one-hour time windows3. Given N airports, the network of
causal relationships is built by applying the Granger causality
test (‘in mean’ or ‘in tail’) to all the possible N(N − 1) pairs
of airports. Hence, a correction to compensate for the number
of tests needs to be considered [13]: we use the Bonferroni
correction, thus setting the significance level of each test as
equal to 5%

N(N−1) with N = 255. A similar approach has been
recently considered by [5], [14].

Studying the topology of the network of causal relationships
in the ATM system is crucial to understanding the dynamics of
delay propagation and to investigate whether the introduction
of the mechanisms represents an improvement, e.g. by disrupt-
ing some propagation channels. Hence, standard topological
network metrics can then be extracted from the network of
causal relationships, ranging from link density, reciprocity,
clustering, and so on. Here, we consider: (i) link density,
capturing the average level of causality in the process of delay
propagation; and, (ii) the number of feedback triplets4, repre-
senting subsystems of three airports where delay propagates
in a circle, thus resulting in the feedback dynamics of delay
amplification. A (new) ATM mechanism that tends either to
decrease the level of causality or to disrupt such feedback
effects, would represent an improvement for the ATM system,

1Thus, we can consider the time series of binary variables, which are 1 if
the state is extreme, 0 otherwise.

2Here, flight delay is defined as the difference between actual and scheduled
departure times.

3When no departing flights are present in the one-hour interval, we define
the state of delay as equal to zero.

4A feedback triplet is a subgraph of three nodes, A, B, and C, where A
causes B, B causes C, and C causes A.
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thus we can quantify the impact of the 4DTA mechanism at
the network level also by measuring the percentage changes
of these network metrics from the baseline to the 4DTA
scenario. However, the value of a network metric such as the
number of feedback triplets depends on the link density of the
network, which may change from one scenario to another. For
a fair comparison, we consider the ‘over-expression’ of such
a metric, where over-expression is defined as the ratio of the
observed value of a network metric to its expected value in
the random case of the Erdös-Renyi model with the same link
density. Not all flight delays have the same impact on the ATM
system in terms of costs, e.g. delays for connecting flights
might generate higher costs. Within our simulation framework,
we can explicitly assess the dynamics of cost propagation by
studying the causality network built with the state of the ‘cost
of delay’ of an airport, which is defined as the average cost
of delay (at any phase, from departure to arrival) of all flights
departing from that airport, within a one-hour time window.
Hence, a similar causality analysis can be performed, but with
a focus on the propagation of costs within the ATM system.
Since the 4DTA mechanism aims to reduce the costs each
airline incurs, by means of a dynamic cost computation during
the tactical phase, the study of cost propagation may reveal
patterns not observed for delay propagation, because of the
supra-linear dependence of the cost of delay on the simple
delay magnitude [6].

IV. RESULTS

In this section, we first illustrate how the model behaves
in different situations, before exploring the metrics associated
with various stakeholders and concepts.

A. Decision process of agents

When flights are deciding whether to modify their cruise
speed, they estimate the amount of expected delay, and the
fuel and delay costs. This information is recorded in the model
allowing us to assess the decision process of the agents.

Figure 1 presents the amount of delay (in minutes) that
flights decide to recover in the three levels, both in the baseline
and stressed scenarios. In Level 0 the focus is solely on the
amount of delay. This leads to a ‘greedy’ behaviour with flights
trying to recover a high percentage of the maximum possible
recoverable delay. Once the cost of delay and fuel is explicitly
considered, a more conservative approach is observed, in Level
1. When the possibility to reduce speed is introduced in Level
2, a more interesting behaviour emerges. In the baseline, as
the system is not under high stress, many flights consider
the possibility to ‘generate’ delay in order to save fuel at
the TOC assessment5. In the stressed case, as more delay is
present in the system, its recovery becomes a higher priority
as the associated costs increase. Note that for Level 2, the
information presented includes the decisions considered when
assessing the WFP and is updated at TOC. If the information

5Note that only flights that have an expected arrival time earlier than 15
minutes with respect to their schedule have the possibility to slow down. They
are therefore transferring buffer to fuel savings by reducing their cruise speed.

Figure 1. Expected amount of delay to be recovered by the flights under the
different scenarios.

is disaggregated, it is possible to observe how some flights
decide to wait for passengers and then recover all the delay,
but then readjust the amount of delay to be recovered at TOC
once more up-to-date information on expected arrival delay
and costs are available. This might drive a lower WFP as the
flight is able to estimate that this waiting might represent a
high fuel cost to recover the introduced extra delay.

Figure 2. Flights’ decisions and delay experienced for Level 0 and 1, in
stressed scenarios.

Figure 2 presents the percentage of flights for the stressed
cases of Level 0 and Level 1 in different categories: expected
or actually ‘on time’ (with delay ≤ 20 min), expected or
actually ‘delayed’ (with delay > 20 min), maintaining their
‘nominal speed’, or ‘speeding up’. The percentage of flights
deciding to speed up is higher in Level 0 than in Level 1: the
latter is considering the expected cost, not only the amount
of delay. Similarly, there is no economic benefit in speeding
up many of the delayed flights (in some cases it will generate
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higher costs with limited savings). Therefore, in Level 1, they
are maintained at their nominal speed. This leads to overall
higher magnitudes of delay and reactionary delay in Level 1,
but with lower total costs. Moreover, the number of flights
delayed at arrival are similar in both cases. There are more
flights expected to arrive with delay also due to WFP, which
might increase the overall delay but reduces the total cost.
Around half of the flights that speed up in Level 1 are
expected to have less than 20 minutes of delay. This speed
variation ensures that they are maintained in that category.
In Level 0, on the contrary, flights with small delays are
maintained at their nominal speed, but then increase their
delay during the flight, arriving with higher delays and costs
at their destination. Overall, in Level 1, most of flights that
expect to arrive with delay at TOC actually arrive delayed,
while the mechanism helps to maintain on-time flights that
expect to arrive with small delays (less than 20 minutes).
Level 0 targets high delays: therefore, flights with small delays
might end up increasing their delay and costs, while a large
number of delayed flights speed up, but remain with a high
delay. Level 1 considers more carefully which flights to speed
up, as this comes at a (very) high fuel cost and uses WFP,
increasing the departure delay, but reducing the total cost (as
expensive missed connections are reduced). This is consistent
with previous results, e.g. in [4]: WFP is important when the
cost of delay is properly considered, as recovering delay by
speeding up is usually (very) expensive.

B. Impact on flight-centric metrics

Figure 3 shows the effect of the implementation of the
4DTA mechanism on various airline metrics. It represents
the relative difference, in percentage terms, for Level 1 and
Level 2, for their baseline and stressed scenarios. Particularly
for Level 1, flights that are already delayed are (somewhat)
further delayed when stressed, as shown by the orange bars.
Overall, in Level 1, airlines do not increase speed very much
(as the cost of fuel is considered). For Level 2, in the baseline
situation, flight arrival ‘delay’6 is as high as 12.5%. This
takes place mainly for the negative delays, i.e. for flights that
arrive before schedule. Also in Level 2, the airline slows down
early flights, since they do not benefit from an earlier arrival,
and saves fuel. Level 2 thus saves fuel and, complementarily,
reduces reactionary delay (relative to Level 1).

The stressed situation is different. Indeed, Level 0 is using
high amounts of fuel, since its focus is solely on reducing
delay. In Level 1, the delays are still significantly larger, and
the positive delays are higher than in the non-stressed situation,
on average. In this case, the airline is more aggressive and
tries to protect connections (as also explained in the next
section, see Figure 4) at the expense of high average delays:
in particular, reactionary delays. Level 1 also takes the cost
of fuel into consideration, which leads to fuel savings and
contributes to the high delays. At Level 2, higher savings
with respect to Level 0 are observed, than for the Level 1

6We use the term ‘delay’ in the broadest sense, to include negative delay -
i.e. early flights.

Figure 3. Changes in different metrics when various levels of 4DTA are
implemented: average flight arrival delay, average arrival delay for positive
delays only, average reactionary delay, average non-fuel cost, average cost of
fuel, and average total cost. On the left, the results show the case where 4DTA
is implemented in a normal, non-stressed situation (low delays). On the right,
the stressed cases are displayed. All changes are computed with respect to
their respective baseline, i.e. non-stressed on the left and stressed on the right.

implementation. This highlights the benefit of the conjoint
implementation of WFP and DCI. Moreover, as the possibility
to slow down is available for early arrivals, extra fuel can be
saved for specific flights. WFP reduces the non-fuel associated
costs, as connections are better protected. Not only are the
costs decreased in this case, but also the average delay. In
addition to the general trade-off between costs and delays,
there can also be a trade-off between different types of costs,
as highlighted by Level 1 in the stressed scenario.

C. Impact on passenger-centric metrics

Passenger delays tend to increase with the 4DTA mecha-
nism: see Figure 4, which shows the percentage change in
passenger-centric metrics in the scenarios, with respect to the
baseline. When the mechanism is implemented at Level 1,
the metrics evaluating the preservation of passenger itineraries
(i.e., the number of passengers with a modified itinerary and
the passenger centrality) show that passengers arrive more
often at their destination according to their scheduled itinerary,
than in the baseline. The average passenger centrality loss
(incoming and outgoing) slightly decreases, both in the default
and stressed scenarios. The percentage decrease with respect to
the corresponding baseline is larger for the outgoing centrality
and in the stressed case. The decrease is statistically significant
(two-sample T-test, p<0.05) for the outgoing centrality loss
(default and stressed) and for the incoming centrality loss in
the stressed scenario. Given the general increase in delays
and the fact that the increased loss of trip centrality tells
us that potential connections (i.e., all connections that are
possible, not only the ones actually used by passengers)
are increasingly disrupted with respect to the baseline, the
improvement from the passengers point of view must be due
to the increased use of WFP and to the better evaluation of
the possibility to speed up to preserve passenger connections.
This is particularly visible in the average delays for connecting
and non-connecting passengers, as shown in the figure. Arrival
delays increase more for the latter than the former, indicating
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that connecting passengers are protected to the detriment of
others.

Figure 4. Changes in passenger-centric metrics in various scenarios: passenger
arrival delay, arrival delay only for point-to-point (non-connecting) passengers,
arrival delay for connecting passengers, number of cancelled legs for passen-
gers (due to lost connections at the end of the day), number of modified
passenger itineraries (at least one leg cancelled or using a different flight),
average centrality loss. Three types of centralities are considered: passenger
centrality (outgoing and incoming), and trip centrality (in this case, the average
incoming and outgoing centralities coincide.

Note also the difference between Level 1 and Level 2
implementations in the stressed case. At Level 1, the airline
uses WFP a lot, since it is making this decision before deciding
to speed up, and thus does not balance the value of WFP
against DCI. At Level 2, both decisions are made conjointly,
which means that WFP is used less, as it is expensive in fuel
to recover the wait by speeding up. Fewer itineraries are thus
maintained, but the overall delay levels are lower.

D. Impact on network

TABLE I
LINK DENSITY OF THE CAUSALITY NETWORKS FOR THE BASELINE

SCENARIO, FOR BOTH DEFAULT AND STRESSED CASES.

Default Stressed

GC in mean: delay 0.004 0.003
GC in mean: cost of delay 0.006 0.005

GC in tail: delay 0.16 0.34
GC in tail: cost of delay 0.23 0.34

Delays tend to increase when the 4DTA mechanism is
implemented due to the more conservative strategy of delay
recovery during cruise (see Section IV A). Nevertheless,
4DTA reduces the correlation between delays at any level
of implementation, for both default and stressed cases, thus
disrupting some channels of delay propagation. The number of
these channels is captured by the link density of the causality
network built for the baseline, shown in Table IV-D. The level
of causality ‘in tail’, for both delay and the cost of delay, is
much larger than the corresponding ‘in mean’ case, suggesting
that restricting the causality analysis to the propagation of
‘extreme’ events is more informative. The disruption of the

propagation channels can be measured by the variation of
link density with respect to the baseline. The average level
of Granger causality in mean (measured by link density)
decreases from the baseline scenario to any other scenario
with 4DTA implemented: see the top panel of Figure 5.
However, this does not apply to extreme delays, which, on
the contrary, become more correlated, as illustrated by the
increasing link density of the Granger causality in tail network
(with the exception of Level 2 for implementation in the
default case). This negative impact of the 4DTA mechanism
has an explanation in terms of the DCI computation: in the
case of large delays, the optimal decision by airlines is not to
use too much fuel, instead of speeding up, thus resulting in
propagating more reactionary delay.

Figure 5. Percentage variations of the link density and the number of feedback
triplets of the causality networks from the baseline scenario to the scenario
with 4DTA implemented, at both Level 1 and Level 2, and for both the default
and stressed cases. The causality analysis is shown for both the delay (top)
and the cost of delay (bottom).

The opposite is observed when the causality analysis is
applied to the propagation of the cost of delay: the level of
causality in tail then decreases in any 4DTA scenario with
respect to the baseline (see the bottom panel of Figure 5).
This suggests that (at least some) propagated large delays have
less impact in terms of costs, whereas some smaller (but more
costly) delays, are reduced by the 4DTA mechanism, e.g. by
preserving connections or avoiding the cost of compensation.
Furthermore, the propagation channels of both delays and costs
are quite different. To show this, we compare the two causality
networks for the baseline scenario, built respectively for the
delay and the cost of delay, by using the Jaccard index, which
is a measure of similarity between two networks7. Considering
Granger causality in mean, it is 0.50 (default; all values cited
to 2 d.p.) and 0.40 (stressed), while it is 0.16 (default) and
0.30 (stressed) for the Granger causality in tail, thus revealing
partial, or low, superposition of the propagation channels.

In Figure 5, we show the percentage variations of the
over-expression of feedback triplets measured in the causality
networks, from the baseline to the scenario where 4DTA is
implemented at both Level 1 and Level 2. When considering
Granger causality in mean for the cost of delay at Level 1

7The Jaccard index is defined as the ratio of the size of the intersection
and the size of the union for two sets of links defining two networks to be
compared.
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(default), we note that the decreasing level of causality is
coupled with an overall decrease of the network metric, thus
suggesting the disruption of a number of propagation channels,
which are involved in the feedback subsystems amplifying the
propagation of costs. On the contrary, an increase of the over-
expression is observed at Level 2. In this case, the feedback
subsystems are less affected by the mechanism. Similar be-
haviour is observed for the dynamics of the propagation of
‘extreme’ costs, captured by Granger causality in tail. In the
stressed scenarios, this is also observed ‘in tail’ for both Level
1 and Level 2. However, quite the opposite pattern (c.f. default
case) emerges when considering Granger causality in mean8.
In conclusion, the 4DTA mechanism is successful in reducing
the propagation of the airline cost of delay. Nevertheless, the
feedback processes at the network level, which have a negative
impact on cost efficiency, are (largely) unaffected.

V. CONCLUSIONS AND FURTHER WORK

Adjusting aircraft departure times and cruise speeds is a
powerful tool in airline operations. We have explored various
associated mechanisms, with a special emphasis on new rules
based on an airline’s network-wide cost minimisation. The
combination of WFP and DCI increases the possibilities for
delay mitigation, while taking into account passenger, fuel, and
non-passenger costs. The Mercury agent-based model allows
us to run a simulation of a single day of operations, tracking
passengers and aircraft, allowing airlines to make complex
decisions. The microscopic nature of the model supports the
quantification of various metrics related to stakeholders, and
assessing overall network performance under various scenar-
ios.

Standard metrics show that relaxing arrival delay constraints
can lead to a reduction of costs, due to savings in fuel
and passenger-related costs. The best solution for airlines is
achieved when optimising according to the joint objectives of
WFP and DCI, and is particularly interesting in the stressed
case. However, from the passenger point of view, applying
these mechanisms does not necessarily have a positive impact.
Most passengers experience a delay increase with respect to
the baseline. Non-connecting passengers are more impacted,
as airlines try to protect connections in exchange for aver-
age higher delay levels. Fewer passenger itineraries are then
disrupted, however. Demonstrated by centrality metrics, the
number of overall possible trips decreases, but the number
of actual trips is improved, by the mechanisms. There is
a clear trade-off between passenger-centric and flight-centric
indicators (at least for some passengers). The existence of
such trade-offs is important to highlight before deployment,
and should nurture the debate on implementation priorities.
Centrality metrics also show a clear decrease of the coupling
of the network, in the sense that local disruptions affect fewer
other parts of the network, when advanced mechanisms are

8We suspect this is because of larger random delays, thus resulting in larger
statistical fluctuations affecting the network metrics, especially in the case of
the Granger causality in mean network, which is characterised by a very low
link density.

implemented. This is an important systemic effect, and could
lead to higher resilience and better capabilities for mitigating
the propagation of local disruption.

From a project workshop with a cross-section of stake-
holders, an important issue raised was the interpretation of
some of the advanced metrics developed. Whilst centrality
and causality are clearly helping to assess the network state,
their meaning may not be immediately transparent. Even
though the direction in which they should tend is clear (less
causality, more centrality), the magnitude of such changes
does not have an immediate interpretation. The consortium
is currently working on illustrating these complex metrics and
relating them to other, more standard ones. The team is also
currently building an improved model, and the definition of
more restricted scenarios, i.e., test cases, which will be used
to assess the effectiveness of the mechanisms in specific cases,
and the monetary value of schedule buffer. Attention will
be paid to rendering the model user-friendly for operational
stakeholders and system designers. With rewards for early
movers now being progressed directly at the European Com-
mission services level [2], assessments such as those presented
in this paper, critically able to quantify the impacts of, and
dependencies between, mechanisms introduced at different
levels, should contribute to the implementation of the Airspace
Architecture Study [1].
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