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Abstract: Artificial intelligence techniques are now widely used in various agricultural applications,
including the detection of devastating diseases such as late blight (Phytophthora infestans) and early
blight (Alternaria solani) affecting potato (Solanum tuberorsum L.) crops. In this paper, we present a mo-
bile application for detecting potato crop diseases based on deep neural networks. The images were
taken from the PlantVillage dataset with a batch of 1000 images for each of the three identified classes
(healthy, early blight-diseased, late blight-diseased). An exploratory analysis of the architectures used
for early and late blight diagnosis in potatoes was performed, achieving an accuracy of 98.7%, with
MobileNetv2. Based on the results obtained, an offline mobile application was developed, supported
on devices with Android 4.1 or later, also featuring an information section on the 27 diseases affecting
potato crops and a gallery of symptoms. For future work, segmentation techniques will be used to
highlight the damaged region in the potato leaf by evaluating its extent and possibly identifying
different types of diseases affecting the same plant.

Keywords: deep neural networks; image processing; classification of potato crop diseases

1. Introduction

The automatic detection of pathogens in plants, as early as possible and without
damaging the plant, is an approach that is enjoying increasing success in the agrifood sector.
In automatic detection, the basic assumption is that a diseased plant looks different from
a healthy one. For example, leaves can exhibit subtle color differences, often invisible to
the human eye but which can be captured using techniques such as spectral imaging. The
detection of potato crop diseases is complicated because parasites and their eggs are often
found under the canopy of plants and are therefore difficult to detect. They are often very
small and show a very local distribution. Crops, in general, could be affected by multiple
diseases at the same time. Therefore, not only high-resolution detection but also local
and organism-specific detection is needed. High-resolution imaging, combined with deep
learning (DL) techniques, especially convolutional neural networks (CNNs), could have the
potential for precision agriculture for standard and greenhouse crops. In both cases, large
quantities of labeled images from different situations (locations, seasons, crop varieties)
are needed to sufficiently train deep learning algorithms. Moreover, augmentation and
smarter training techniques are necessary to overcome the lack of real data and labeled
images. Finally, transfer learning has also proven useful for the identification and diagnosis
of diseases in agricultural crops, without ignoring the multiplicity of applications it has [1].

Particularly, potato (Solanum tuberosum L.) crops are constantly affected by the inci-
dence of parasites which cause a decrease in their yield every year. Being a widespread
crop in the world, the control of its production requires attention, and the problem of
automatic disease recognition from leaf images via CNNs has been the subject of much
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recent literature, such as [2–8], to cite only some contributions. For instance, in [9], potato
tuber diseases were diagnosed using the VGG architecture, by adding new dropout layers
to avoid overfitting. As a result, 96% of the test images were classified correctly. After
comparing MobileNet, VGG16, InceptionResNetV2, InceptionV3, ResNet50,VGG19 and
Xception architectures, in [10], it was found that VGG16 had the highest accuracy (99.43%)
on test data for the diagnosis of late blight and early blight, the most incident diseases in
potato crops. Finally, in [11], a novel hybrid deep learning model, called PLDPNet, has
been proposed, for automatic segmentation and classification of potato leaf diseases. The
PLDPNet utilizes autosegmentation and deep feature ensemble fusion modules to enhance
disease prediction accuracy, with an end-to-end performance of 98.66% on the PlantVil-
lage dataset ([12], https://www.kaggle.com/datasets/emmarex/plantdisease, accessed on
12 December 2023).

The versatility of CNNs allows for their implementation on different platforms, includ-
ing mobile devices. Mobile applications achieved rapid popularity because, in addition
to being practical and lightweight, they simplify access to information and promote their
widespread use. Their ecosystem is made up of several factors: infrastructure, operating
system (OS), information distribution channels, etc. Nowadays, almost everyone owns
a smartphone, whether it is an Android, iOS or other operating system device. Despite
their diffusion, in Cuba, a large part of the population can only afford phones with low
performance (Android version over 4.0, 2G data network with a population coverage of
85%, internal memory 1 GB, etc.). The quality–price ratio is an obstacle to technological
updating, and therefore, obtaining a practical and lightweight tool for the identification of
potato diseases is a necessary strategy to help farmers in controlling their crops.

The objective of this paper is to release an offline mobile application with the most
effective machine learning architecture for the diagnosis of fungal blight in potatoes. The
mobile application developed is compatible with Android versions higher than 4.1, has a
storage capacity of 77.57 MB and does not require an Internet connection or mobile coverage.
Other similar proposals can be found in the literature, as in [13], where a mobile app based
on the MobileNetv2 architecture was developed, which can classify five disease categories:
general early blight, severe early blight, severe late blight, severe late blight fungus and
general late blight fungus. The model achieved an accuracy of 97.73%. Nonetheless, this
study, as well as [14–16], requires high-resolution images and/or advanced features in
the technological infrastructure, incompatible with the characteristics of Cuban mobiles,
which are mostly on the way to obsolescence and unable to take even medium-quality
pictures. In [17], a mobile application called VegeCare was devised for the diagnosis of
diseases in potatoes, yielding 96% accuracy. However, it is a proprietary software, difficult
to access for the Cuban community. Moreover, most of these studies propose an architecture
that requires connection to an external server for image processing, as in [15]. While it
is true that this works without extenuating circumstances in many countries, due to the
availability of resources and access to free online platforms, it must be considered that in
Cuba there are still planting regions where there is no mobile coverage or very low signal,
which would hinder access to available international solutions.

Many mobile apps for smart agriculture have recently been devised based on deep
learning [18], sometimes founded on proprietary software. However, these apps, in ad-
dition to not being free of charge, can only be installed on devices with current Android
versions and, normally, refer to a client–server architecture where the information is stored
in external databases. Therefore, they require mobile networks and an external server with
a MySQL manager for queries [15]. In Cuba, the company GeoCuba has focused its efforts
on image processing in the agricultural sector, mainly for the control of sugar cane and
rice cultivation. Using satellite photos, drones and AI techniques, damages in these crops
can be identified; however, this requires advanced tools to capture images in real time and
platforms with high computational performance, not to mention that the distance at which
the images are taken may hinder the efficiency of the diagnosis.

https://www.kaggle.com/datasets/emmarex/plantdisease
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All the above motivations push towards having a simple mobile app that, in addition
of being free, offline and suitable for the characteristics of devices with low performance,
can also cover the role of a decision assistant. The real-time diagnosis of the main diseases
contributes to the reduction in the risk of crop losses, to the early identification of the
type of parasite and to the reduction in the use of pesticides, and therefore to ecological
sustainability. It includes an important strategic component as it is an informative tool that
helps non-expert personnel to know about different diseases present in the crops, produced
by insects, viruses, bacteria and nematodes, as each one has degenerative factors on a
medium or large scale in potato cultivation.

Summing up, the main contributions of this paper can be described as follows.

• We carried out an experimental study to find the best DL model for classifying potato
diseases, based on leaf images, which represents a good compromise between compu-
tational lightness and performance;

• We have implemented the free PCD (Potato Crop Diseases) app, to help farmers detect
potato crop diseases early, if equipped with a basic mobile phone.

The rest of the paper is organized as detailed below. In the following section, the
PlantVillage dataset and the experimental setting are presented. In Section 3, our experi-
mental results are reported, assessing the superiority of the MobelNetv2 architecture to be
included in a mobile app for potato disease detection, while a brief discussion on similar
studies carried out in the literature constitutes Section 4. The PCD app is briefly described in
the subsequent Section 5. Finally, Section 6 traces some conclusions and future perspectives.

2. Materials and Methods
2.1. The PlantVillage Dataset

Potato crop leaf images were used as a case study, with a focus on the most incident
diseases, late blight and early blight, identifying three classes by including healthy leaves.
The Phytophthora infestans (late blight) fungus is a polycyclic disease, and in its various
strains is responsible for both tomato and potato downy mildew, one of the most well-
known and feared phytopathologies, favored by very prolonged rainfall followed by
considerable air humidity with night-time dew. The Phytophtora symptoms are evident on
the leaves—with young leaves more susceptible to infection—where necrotic light-colored
spots appear that rapidly turn to dark brown and tend to dry out and affect the leaf surface
first and then the entire aerial part of the plant and the tuber. Since late blight develops
rapidly at moderate temperature and high humidity, a condition that corresponds to the
climate situation in Cuba, where the rainy, humid and hot season goes from April to
November, entire crops can collapse in less than a week [19]. The Alternaria solani (early
blight) fungus forms very similar lesions on both leaves and stems and can affect the entire
plant. On the leaves, the symptoms initially manifest themselves with green or light-brown
spots presenting concentric rings which, as the disease progresses, transform into dark-
brown angular lesions with a yellow halo limited by the leaf veins. Lesions can rupture
easily. On the fruits, dark, sunken and leathery notches appear on the side of the stem. The
early blight disease is preserved on crop residues of infected plants and spreads through
rainwater or irrigation. As for late blight, the conditions predisposing the development of
the pathogen occur with temperatures between 22 and 33 ◦C and high humidity levels [19].

In recent years, the frequency of early and late blight has increased, probably also
following the occurrence of predisposing climatic conditions (related to the general rise in
temperatures). In both diseases, the main control measure suggested is to correctly identify
the problem through early detection and classification. The data used in this study are
extracted from the PlantVillage dataset (https://www.kaggle.com/datasets/emmarex/
plantdisease, accessed on 12 December 2023). An average of 1000 images were used for
each class, with resolution 96 × 96 pixels per inch, dimensions 256 × 256 pixels, and 24 bits
in depth (see Figure 1). For each class, 700 images were used for training, 200 for validation
and 100 for model evaluation.

https://www.kaggle.com/datasets/emmarex/plantdisease
https://www.kaggle.com/datasets/emmarex/plantdisease


J. Imaging 2024, 10, 47 4 of 12

Figure 1. Sample images, taken from the PlantVillage dataset, corresponding to late blight, early
blight and healthy potato leaves.

2.2. Experimental Setting

The experiments were carried out with a Windows 11 Pro operating system, on
a ×64 processor, Intel(R) Core(TM) i5-7200U CPU@2.50 GHz 2.71 GHz and with 8 GB
RAM. For image processing, we made use of the Anaconda Navigator platform (v.2.1.4)
and the Spyder IDE (v.5.1.5), employing TensorFlow (v.2.10.1), Keras (v.1.1.2), Matplotlib
(v.3.7.1) and NumPy (v.1.23.4) libraries. Python and the Python interpreter (v.3.9) were
used for the software implementation. The Android Studio development environment, the
Kotlin programming language and TensorFlow-lite dependencies were used to develop the
mobile application.

Five widely used CNNs have been evaluated, namely MobilNetv2 [20], VGG16 [21],
VGG19 [22], InceptionV3 [23] and Xception [24], calculating the accuracy of each model, to
select the best performing one. For each of the analyzed architectures, after a grid search
procedure, the hyperparameters were set as listed below (with values in common for the
first iterations), in order to make a fair comparison between models.

• Number of epochs: 10, 50;
• Activation function for the output layer: softmax;
• Optimizer: Adam;
• Loss function: sparse categorical cross–entropy;
• Batch size: 32, 50;
• Metrics: Accuracy.

The first considered model was MobileNetv2, which is a lightweight architecture
particularly tailored to mobile applications, whose computational cost and processing time
are significantly lower than the rest of the architectures tested in our experiments. It is based
on an inverted residual structure and, as a whole, contains the initial full convolutional
layer with 32 filters, followed by 19 residual bottleneck layers. ReLU6 is used as the
activation function because of its robustness when used with low–precision hardware.
Finally, the network has an image input size of 224 × 224 [20]. Instead, the VGG16 model
has 13 convolutional layers followed by 13 fully connected layers—with ReLU activation—
only 16 of which have learnable weights (hence the name) [21]. The network has an image
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input size of 224 × 224. VGG19 shares the same structure as VGG16, with the addition of
three convolutional layers; thus, it has 19 trainable layers [22]. Inceptionv3 has a 42-layer
architecture and processes images of size 229 × 229. It is computationally less expensive
with respect to previous Inception architectures (v1 and v2) and can easily be retrained for
custom image classification problems [23]. Finally, Xception is an extension of the Inception
model, which uses the standard Inception modules with depth-separable convolutions.
The Xception architecture has 36 convolutional layers forming the feature extraction base
of the network. The 36 convolutional layers are structured into 14 modules, which have
linear residual connections, except for the first and last modules. In short, the Xception
architecture is a linear stack of depthwise separable convolutional layers with residual
connections. The convolutional and separable convolutional layers are followed by batch
normalization [24]. All experiments described in the following were based on pretrained
architectures (CNN models presented in this section are saved in Github and are freely
downloadable at https://github.com/dkpineda88/TransferLearninPapas.git (accessed on
12 December 2023)), fine-tuned on the PlantVillage dataset. Three steps were carried out:

• Step 1: Firstly, the models were trained for ten epochs;
• Step 2: Then, three new layers were added: (i) a dropout layer with a rate of 0.3 to

avoid overfitting, (ii) a dense layer with ReLU activation functions and (iii) a softmax
activation function in the output layer;

• Step 3: Finally, the new incorporated layers were kept (with a dropout rate of 0.5) and
the number of epochs was increased to 50.

The three steps were performed considering both a batch size of 32 and 50 samples. In
this work, the trained models were converted into tflite files for optimization and processing
in the Android Studio platform. Finally, a model deployment module was built to store the
trained neural networks in the Kotlin framework (for this purpose, the following dependen-
cies were installed: ‘org.tensorflow:tensorflow-lite:2.4.0’, ‘org.tensorflow:tensorflow-lite-
support:0.1.0’, ‘org.tensorflow:tensorflow-lite-metadata:0.1.0’, ‘org.tensorflow:tensorflow-
lite-gpu:2.3.0’).

For the validation of the application, specialists and technicians from the Plant Health
Directorate of the Cuban Centro Nacional de Sanidad Agropecuaria (CENSA) were selected.
Subsequently, a survey was applied to measure the degree of acceptance of the system and
its effectiveness in diagnostics. The survey included nine questions to be evaluated on a
scale of one to five. For the evaluation of late blight and early blight classification, the users
employed their own images extracted from field samples taken by experts from the Plant
Health Directorate of CENSA.

3. Results

The increase in the cost of energy and raw materials in Cuba is causing a new concept
in agricultural production techniques, and the use of IT tools, mainly based on artificial
intelligence, paves the way for developments capable of revolutionizing agricultural work.
The goal of smart agriculture is to increase profits and, of course, reduce the risks of
capital loss and destruction of natural resources. Mobile applications for plant disease
detection represent a smart strategy and their use is currently essential to strengthen
food sustainability, especially given the lack of investment in infrastructure plaguing the
Cuban agricultural system. To obtain a CNN model capable of significantly reducing
computational costs, being adaptable to the performance of mobile devices and capable of
processing images effectively, it is necessary to take into account several incident factors
(e.g., the number of model parameters and processing times), mainly related to the limited
computational resources available. In fact, traditional deep learning models cannot be
applied directly to mobile devices.

Therefore, after investigating lightweight neural network architectures and using
transfer learning to limit the computational load due to training, the MobileNetv2 architec-
ture was found to have the best adaptability to the data, with the highest level of accuracy,
the lowest number of parameters and the lowest number of epochs (see Table 1).

https://github.com/dkpineda88/TransferLearninPapas.git
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Table 1. Hyperparameter setting and best results for the five CNN models.

CNN Type Step 1 # Trained
Param.

# Frozen
Param. # Epochs Accuracy Loss Model Size

MobileNetv2 3 81,984 2,257,984 50 0.987 0.0623 3.89 MB
VGG16 2 1539 14,714,688 10 0.94 0.38 14.2 MB
VGG19 1 1539 20,024,384 10 0.9844 0.0415 19.2 MB
Inceptionv3 1 153,603 21,802,784 10 0.91 5.7269 21.4 MB
Xception 3 6147 20,861,480 50 0.9467 0.1394 21.1 MB

1 The Step column defines at which of the above described training steps the network reaches its best performance.

After training the MobileNetv2 only for ten epochs, data overfitting was observed, both
for a batch size of 32 and 50. Instead, adding the layers described in Step 2, the accuracy
on the validation set shows that the model is slightly underfitted. Finally, executing
Step 3, the validation set accuracy remains relatively aligned with that on the training
data (see Figure 2). The confusion matrix shows a more specific than sensitive model
(see Figure 3); however, the misclassifications of the diseased leaves, out of the total number
of test samples, represent less than 5% (Figure 4). Finally, considering our problem in
a binary classification framework, Precision and Recall show high and balanced values
(≈0.83 and 0.84, respectively), which indicates an unbiased classifier in recognizing healthy
and diseased leaves, and therefore the ability to both find all relevant pathological cases
while identifying them selectively.

Figure 2. MobileNetv2 accuracy and loss on the training and validation data, respectively (number of
epochs on the x axis).

Figure 3. MobileNetv2 results on the test set summarized in the confusion matrix.
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Figure 4. MobileNetv2 correct prediction on some test data. The confidence (in brackets) with which
the network takes its decision is reported for each sample image.

4. Discussion

The results obtained in our experiments differ from those reported in [6] where, after
applying ten deep learning models such as DenseNet201, DenseNet121 [25] (a densely
connected convolutional network (DenseNet) is a feedforward architecture in which each
layer is linked to every other layer. This allows the network to learn more effectively by
reusing features, hence reducing the number of parameters and enhancing the gradient
flow during training. The number attached to the name stands for the number of layers),
NASNetLarge [26] (a neural architecture search network (NASNet), from Google Brain,
utilizes reinforcement learning with a recurrent neural network-based controller to search
for an efficient building block for a small dataset (CIFAR10), which is then transferred to a
larger dataset (ImageNet), by stacking multiple copies of the building block. NASNetLarge
owes its name to the higher resolution of the images it is able to process, namely 331 × 331
pixels (relative to other NAS models)), Xception, ResNet152v2 [27] (residual networks
(ResNet) use skip connections. Skip connections distribute activations of a layer to further
layers by skipping some layers in between. This forms a residual block. ResNets are
made by stacking residual blocks together. By using skip connections, alternative paths are
provided for the gradient (with backpropagation). These additional paths are beneficial for
the model convergence. The improvement in ResNetv2 is mainly found in the arrangement
of layers—batch normalization-ReLU and convolutions exchanged—in the residual block.
The number attached to the name stands for the number of layers), EfficientNetB5, Efficient-
NetB7 [28] (in the EfficientNet architecture, a scaling method is used to uniformly scale all
dimensions of depth, width and resolution using a compound coefficient. The baseline
network of EfficientNet was built with a NASNet incorporating squeeze and excitation
in the building block of MobileNetV2. Greater numbers stand for larger models able to
process higher-resolution images), VGG19 and MobileNetv2, along with the hybrid model
EfficientNetB7–ResNet152v2 for classification, it resulted that DenseNet201 obtained the
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highest accuracy, equal to 98.67%, with a validation error of 0.04. However, the model
covers not only potato but also tomato and bell pepper diseases, with a total of 15 classes.
Instead, in [5], the VGG16 model was selected, achieving 100% accuracy on the test data,
after also evaluating VGG19, MobileNetv2, Inceptionv3 and Resnet50v2.

Generally speaking we can state that the results (accuracy) obtained in the present
work conform to the performance of the other DL methods present in the literature which,
as described both in Section 1 and in the previous discussion, present a performance that
vary approximately from 96% to 100%, with the best accuracy obtained in the case of more
complex architectures (see also https://paperswithcode.com/sota/image-classification-
on-plantvillage (accessed on 12 December 2023) for the related leaderboard). Nevertheless,
neither network size nor processing speed were taken into account in those studies, al-
though they are necessary elements for a model to be encapsulated in a mobile app, which
is the ultimate goal of the present research.

5. Deployment of the PCD Mobile App

Mobile devices have limited storage and computation capability, mostly due to the
battery consumption, a constraint that should be considered when deploying a DL–based
app. Indeed, there are two different ways that a DL inference can be performed with a
mobile phone, based on a cloud platform or on device. Cloud-based deep learning, also
called Edge-DL, is carried out using cloud-exposed APIs that host a pretrained model.
Conversely, the on-device approach presupposes the use of mobile CPUs and GPUs to run
the DL software and the phone memory to store the model [29]. A new trend is to use
custom hardware and/or co-processors to accelerate machine/deep learning applications,
but such hardware devices are present on new processors only with which just high-end
cell phones are equipped [30]. Instead, this paper focuses on low-power devices without
hardware acceleration support, which represents 2/3 of the current market. Nonetheless,
the advantages of the on-device approach lies in being able to work without Internet access,
guaranteeing data privacy and having no cloud hosting costs.

In 2022, there were 7.6 million mobile cellular subscriptions in Cuba, which translated
into a penetration rate of approximately 68% (as for the STATISTA Research Department,
https://www.statista.com/aboutus/our-research-commitment, accessed on 12 December
2023), with an estimated increase to 71.1 during 2023. However, obtaining internet access
can still be a tricky process for some Cubans, at least those living in rural areas, whereas
Cubacel, the Cuban company that provides cell phone service throughout the island, covers
all the main cities and tourist destinations in the country. Furthermore, rural people can
often only afford low-performance phones. For these reasons, the PCD mobile app is
compatible with Android version higher than 4.1, requires 77.57 MB of storage and does
not require Internet connection or mobile coverage. The interface of the application presents
a brief description of the project (see Figure 5a) and a side menu with the following options:
(i) Home (link to the main page), (ii) Crop diseases, (iii) Diagnosis, and (iv) Symptom
images (Figure 5b).

Option (ii) has the objective of showing the 27 diseases that can affect potato crops, and
at the same time briefly describes their main characteristics: scientific name, symptomatol-
ogy, epidemiology and cycle and control techniques. This section shows the list of diseases
subdivided by the causal agents (Fungi, Bacteria and Viruses, Insects and Nematodes,
Figure 6a). Clicking on the disease of interest, its description will be displayed (Figure 6b).

https://paperswithcode.com/sota/image-classification-on-plantvillage
https://paperswithcode.com/sota/image-classification-on-plantvillage
https://www.statista.com/aboutus/our-research-commitment
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Figure 5. Graphic interface of the PCD app; main page (a) and side menu (b).

Figure 6. Graphic interface of the PCD app for the list of diseases (a) and the detailed description of a
specific disease (b).
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Option (iii) responds to the main objective of this work, as it is responsible for diagnos-
ing, through an image, the percentage of presence of late blight, early blight or establishing
that the plant is healthy (Figure 7a). Images can be selected from the gallery of the mobile
device or can be taken in real time in the field. Finally, option (iv) allows the user to visual-
ize, through images, the behavior of the symptoms according to the diseases described in
option (ii) (Figure 7b).

Figure 7. Graphic interface of the PCD app for the diagnosis of late blight and early blight given an
image (a); a diseased leaf example (b).

The mobile application was developed with the objective of providing technicians or
specialists in crop evaluation with an affordable tool for the timely diagnosis of the most
devastating diseases that affect potato crops. The user survey yielded an acceptance rating
of 4.3 out of 5 points, a result that demonstrates its usefulness in decision making and the
manageability of accessing this resource.

6. Conclusions

In this paper, we have proposed an experimental study on different deep network
architectures in order to find the most suitable to be used in a mobile app for potato disease
identification. A major constraint was that of choosing a lightweight model to be used
on obsolete hardware/software mobile phones in Cuba that are also unable to access the
network. Preliminary experimental results are promising. Future work will be devoted to
preventively apply some segmentation techniques on the leaf images to diagnose not only
the type of disease but also its severity (namely the extension of the leaf surface interested by
the presence of stains), which is important especially when leaves may be affected by more
than one disease. Moreover, other diseases—such as rhizottoniosis, caused by the fungus
Rhizoctonia solani and bacteriosis caused by the strain Erwinia carotovora—which produce
alterations to the leaves and the exposed part of the plant (as well as to the tuber) will be
included among the pathologies that can be classified via the PCD app. Finally, enriching
the image collection by the final users—who can capture pictures with the cellular phone
in real conditions—will be valuable, especially in view of a future where cloud computing
will be an option also in Cuba.
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