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Abstract
Shannon entropy is the most common metric for assessing the degree of random-
ness of time series in many fields, ranging from physics and finance to medicine
and biology. Real-world systems are typically non-stationary, leading to entropy val-
ues fluctuating over time. This paper proposes a hypothesis testing procedure to test
the null hypothesis of constant Shannon entropy in time series data. The alternative
hypothesis is a significant variation in entropy between successive periods. To this
end, we derive an unbiased sample entropy variance, accurate up to the order O(n−4)

with n the sample size. To characterize the variance of the sample entropy, we first
provide explicit formulas for the central moments of both binomial and multinomial
distributions describing the distribution of the sample entropy. Second, we identify the
optimal rolling window length to estimate time-varying Shannon entropy. We opti-
mize this choice using a novel self-consistent criterion based on counting significant
entropy variations over time. We corroborate our findings using the novel methodol-
ogy to assess time-varying regimes of entropy for stock price dynamics by presenting
a comparative analysis between meme and IT stocks in 2020 and 2021. We show that
low entropy values correspond to periods when profitable trading strategies can be
devised starting from the symbolic dynamics used for entropy computation, namely
periods of market inefficiency.
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1 Introduction

The Shannon entropy is a widely used measure of randomness in many fields, such as
finance, physics, medicine, and biology (Pincus et al. 1991; Pincus and Kalman 2004;
Dong et al. 2019; Pandey and Sarkar 2015; Strait and Dewey 1996; Bezerianos et al.
2003). One of the main applications of entropy estimation in finance is to measure
the randomness of price returns. When the price incorporates all relevant information,
the market is called efficient, and the price dynamics is a martingale (Samuelson
1965; Fama 1970). As such, any sequence of symbols built upon the price dynamics
does not display predictable patterns, but it is maximally random. Consequently, the
Shannon entropy computed for such a sequence is expected to take themaximumvalue.
Significant drops in entropy values signal some predictability of the price dynamics
(considering only historical observations as the information set). When this happens,
profitable trading strategies can be devised by exploiting such predictable patterns,
and the market is said to be inefficient, see, e.g., (Barnett and Serletis 2000) for a
review.

The drivers of market dynamics are the result of the complex process of matching
the supply and demand of a large number of investors. It is easy to imagine that the
market does not necessarily reflect all relevant information at certain times because of
the complex nature of the price formation mechanism.Moreover, feedback loops, irra-
tional agents, market panic and speculation, or coordination of retail investors driven
by non-economic reasons (like with GameStop, whose price increased significantly in
January 2021 (Mancini et al. 2022)) are just a few examples of mechanisms that can
potentially create booms and busts (Agliari et al. 2018; Chan and Santi 2021). In such
cases, the price dynamics may display some level of predictability, and, as such, the
market is inefficient. A significantly low value of Shannon entropy can capture this.

In various research works, the market efficiency hypothesis is relaxed to account
for the possibility of periods of inefficiency. To capture this effect, Shannon entropy is
employed as a time-varying metric. It is calculated using a rolling window approach,
see, e.g., (Molgedey and Ebeling 2000; Risso 2008; Mensi et al. 2012; Olbrys and
Majewska 2022). It is important to note that many patterns of price dynamics may
jeopardize the estimate of entropy. For example, long memory of volatility can arise
from regime-switching behavior (Susmel 2000; Lobo and Tufte 1998; Malik et al.
2005), thereby affecting the estimation of other dynamic patterns. For this reason, it is
important to filter out any known pattern of market regularity, such as heteroscedas-
ticity or seasonality, when we aim to use Shannon entropy as a measure signaling the
presence of predictability patterns in price dynamics. Interestingly, even after applying
such filters to empirical data, price dynamics often exhibit such patterns, as indicated
by low sample entropy values. This suggests that the market is inefficient at times
(Calcagnile et al. 2020; Shternshis et al. 2022). To show this more rigorously, it is pos-
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sible to devise trading strategies that are associated with a positive return statistically
larger than the one expected in normal periods of high entropy (excluding transaction
costs). Consequently, low entropy values can be interpreted as a measure of market
inefficiency.

A crucial question is whether a drop in sample entropy at some period is statistically
significant or only a fluctuation consistentwith the null hypothesis ofmarket efficiency.

This paper proposes a rigorous methodology to identify significant changes in the
value of the Shannon entropy. Then, in the case of high-frequency financial data, we
show that drops in entropy values are associated with patterns of price predictability
(which can be exploited to profit) and, as such, can be interpreted as market ineffi-
ciencies. We define a rigorous procedure to test the hypothesis that entropy values
associated with two different sequences (based on the symbolization of the price
dynamics with the same finite alphabet) are statistically equivalent. To achieve this
goal, we address two key problems. The first problem is to find the variance of the
sample entropy obtained by the empirical frequencies method (Marton and Shields
1994). The second problem involves identifying the optimal length for a rolling win-
dow used to estimate the time-varying entropy of a time series. Finally, we corroborate
the results by showing that sequences of symbols that are not consistent with the null
hypothesis of market efficiency (i.e., randomness) can be used to define (new) statis-
tical arbitrage strategies based on Shannon entropy as an indicator, in a similar way
of mean-reversion or momentum. In this sense, we interpret a low entropy value as a
measure of market inefficiency.

The variance of the Shannon entropy is the key quantity to use to determine if two
sample entropies associated with two different sequences are statistically equivalent.
The variance determines the standard deviation of sample entropy consistent with the
constant value of entropy. In fact, it is possible to define a z-score given the sample
entropy variance to test the equality of two entropy estimates with a given level of
confidence.

Basharin (1959) obtained the first-order approximation of the variance of the sample
entropy Ĥ calculated using the empirical frequencies method,

D1(Ĥ) = 1

n

⎛
⎝∑

j

p j ln
2 p j − H2

⎞
⎠ (1)

where {p j } j defines the set of probabilities for the possible events and n is the length
of the sequence of events. The same result has been later obtained by Dávalos (2019).
However, Eq. 1 holds in the asymptotic regime, that is, when the length of the sequence
becomes arbitrarily large, i.e., n → ∞. Here, we aim to estimate a time-varying
entropy for finite samples, i.e., using a finite length n of the sequence. Moreover, Eq. 1
is not a consistent estimator of the variance in the case of equal probabilities. When
all probabilities p j are equal, D1(Ĥ) = 0. Thus, a more accurate approximation for
the variance is needed.1

1 Harris (1975) has found an approximation for the variance up to an error term O(n−3).
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Here, we derive a formula for the variance of the sample entropy as a sum of
centralmoments of binomial andmultinomial distributions. These centralmoments are
computed using a novel recursive approach. This approach allows us to approximate
the variance with a high level of accuracy, up to an order of O(n−4).2

Interestingly, Ricci et al. (2021) have found that the naive estimation of the variance
approximation D1(Ĥ) in Eq. 1 has a bias term of order O(n−2). On the contrary, we
show that our proposed sample entropy variance is unbiased. Finally, by leveraging
the explicit formulation of the sample entropy variance, we can define a statistical
test for entropy variation. In Matilla-García (2007), the author suggests a statistical
test for independence of symbolic dynamics by considering a test statistic related
to permutation entropy. In our research, we are not restricted to the case when the
benchmark value of the entropy is its maximum. A rejection of the null hypothesis
signals statistically significant variation between any two possible entropy values.

The second problem relies on finding the optimal time window length when testing
for entropy variation between two subsequent time series. We set a window length to
detect the largest significant change in the entropy value. Here, the variance of sample
entropy is crucial for determining what deviations of sample entropy are consistent
with the estimation errors. Finding the optimal length is a problem of bias-variance
trade-off: reducing the length of the window allows one to obtain a timely estimate of
entropy, i.e., small bias, at the expense of increasing the variance of the estimation,
and vice versa.

Wepresent a novel self-consistent criterion to select (in-sample) the optimalwindow
lengthw. Given a sample of size T , we first define a counting function of the percentage
of entropy variations for non-overlapping time series of length w within such sample.
Under the assumption of a finite number of true entropy variations, the percentage of
estimated variations becomes negligible when w is close to the minimum (w = 1),
while it is zero by definition whenw attains its maximum (w = T ). Then, we show by
simulations that the maximum of such a counting function corresponds to the optimal
window length.

We use the novel methodology to find significant changes in entropy on simulated
and real data.We investigate changes in the efficiency of theNewYork StockExchange
with a particular focus on meme stocks. The lower the entropy of the price return time
series, the higher the price predictability. In particular, we narrow down the analysis to
those particular predictability patterns associated with drops in the entropy value and
show that trading that way leads to positive returns statistically larger than average
market returns. A specific focus is finally given to the GameStop case, whose price
increased significantly in January 2021.

The GameStop case

The GameStop case captivated global attention in early 2021, showcasing the power
of online communities and retail investors in challenging established financial norms.
Fueled by Reddit’s WallStreetBets subreddit, a group of individual investors rallied

2 In general, it is possible to further extend such an approximation by using the proposed approach to
compute higher orders of the central moments associated with the multinomial distribution.
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behind GameStop’s stock, driving its value to astronomical heights and causing sig-
nificant losses for prominent hedge funds that had bet against the company. This
unprecedented situation raised questions about market manipulation, the democrati-
zation of finance, and the potential for social media to disrupt traditional Wall Street
dynamics.

The performance of GameStop, a video game retailer, declined because of the
shift of video game sales to online platforms. In 2020, the share price fell below one
dollar. In the same year, however, an upward movement of prices of a group of stocks,
including GameStop, was driven by the long trades of many individual investors,
who fomented a coordinated action on the Reddit social platform. When the prices
were hitting their all-time highs, the attention of everyone was focused on such shares,
which became known as “meme stocks.” Then, as the end of January 2021 approached,
several retail broker-dealers temporarily limited certain operations in some of these
stocks and options. Consequently, the trend started to revert, even if such a turbulent
period had permanently impacted meme stocks. The stocks have maintained a higher
price level with respect to the period before and have been characterized by higher
volatility. For a precise description of the GameStop case, see the report by the staff of
the US Securities and Exchange Commission (Staff 2021). GameStop’s price began to
increase noticeably on January 13, when the closing price rose to $31.40 from $19.95.
By January 27, GameStop stock closed at a high of $347.51 per share. The following
day, stock prices jumped further to an intraday high of $483.00.

Two crucial aspects have led to the sharp increase in meme stock prices. First, the
aggregation of the orders sent to broker-dealers via online trading platforms, such
as Robinhood, in the hands of a few off-exchange market makers permitted them to
negotiate good agreements. Such a Fintech innovation has resulted in incentives or
no fees for the end customers. The absence of trading frictions has positively affected
retail trading in long positions. The second and more critical aspect is the coverage
of the short positions by professional investors when the prices increased, which has
further amplified such a movement.

The meme stock phenomenon marked a period of exceptional market behavior
characterized by significant inefficiencies. This scenario provides a perfect opportunity
to validate ourmethodology, demonstrating two key points: Firstly, our entropy change
test accurately identifies shifts in efficiency levels. Secondly, our utilization of sample
entropy, especially in discerning sequences of symbols that emerge during inefficient
periods, offers a practical framework for defining trading strategies that statistically
yield positive returns. This approach is akin to the definition of statistical arbitrage
strategies and holds potential for successful application.

For the sake of comparison, we also investigate three IT company stocks. We aim
to analyze entropy changes for more liquid stocks and point out differences, if any,
from the point of view of market efficiency.

Structure of the paper

Section 2 introduces the statistical procedure for testing the null hypothesis of equal
entropy between two subsequent intervals and a method for selecting the length of
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such interval in an optimal way. In Sect. 2.2, we establish an analytical expression
for the variance of sample entropy, approximated up to order O(n−4) with n the
length of the interval. We propose a method for selecting the length of such interval
in Sect. 2.4. We study both the size and power of the statistical testing procedure by
using simulations in Sect. 3. Finally, an empirical application to meme and IT stocks is
presented in Sect. 4. Appendix Sections A, B, and C contain the proofs of propositions
and theorems. Section5 draws some conclusions.

2 Methodology and dataset

First, we discuss the empirical frequencies method for the computation of sample
entropy. Second, we establish an analytical formula for the variance of the sample
entropy. Finally, we use this formula to devise a hypothesis testing for equal values of
entropy between time intervals.

2.1 Shannon entropy

The Shannon entropy is defined as the average amount of information that a process
transmits with each symbol (Shannon 1948).

Definition 1 Let X = {X1, X2, . . .} be a stationary random process with a finite
alphabet A and a measure p. A k-th-order entropy of X is

Hk(X) = −
∑

xk∈Ak

p(xk) ln p(xk)

where xk are all sequences of length k with the convention 0 ln 0 = 0. A process
entropy of X is

h(X) = lim
k→∞

Hk(p)

k
.

We use the empirical frequencies method (Marton and Shields 1994) to estimate
k-th-order entropy from the sequence xn . For each ak ∈ Ak empirical frequencies are
defined as

f (ak |xn) = #{i ∈ [1, n − k + 1] : xi+k−1
i = ak},

where xi+k−1
i = xi . . . xi+k−1. Sample entropy, namely the estimate of the k-th-

order entropy, is defined as

Ĥk(x
n) = −

∑

ak

p̂k(a
k |xn) ln ( p̂k(a

k |xn)), (2)
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with

p̂k(a
k |xn) = f (ak |xn)

n − k + 1

where ln is the natural logarithm.

Finally, the process entropy can be estimated as Ĥk
k .

2.2 Variance of the sample entropy

Let us assume that there are M events which can appear with probabilities
p0, p1, . . . , pM−1,

∑M−1
j=0 p j = 1. We assume that all p j are positive since a zero

probability is interpreted as the absence of that particular event, resulting in a restric-
tion of the sample space, without affecting the entropy value H = −∑M−1

j=0 p j ln p j

because of the convention 0 ln 0 = 0. If events appear independently n times, the fre-
quencies of events f0, f1, fM−1 follow a multinomial distribution. Each frequency is
distributed as Binomial B(p j , n). The estimates of probabilities p j are p̂ j = f j

n . This

section aims to find the variance of the random variable Ĥ = −∑M−1
j=0 p̂ j ln p̂ j . The

variable Ĥ is a k-th-order entropy from Eq. 2 based on the assumption that the blocks
ak ∈ Ak are independent random variables. If all blocks have a nonzero probability
of appearing, then it is M = |A|k with |A| the size of the alphabet A.
Theorem 1 (Estimation of variance) Let be f j , j = 0, . . . , M − 1, multinomial
random variables with probability distribution f M (p0, . . . , pM−1, n). Let be Ĥ =
−∑M−1

j=0
f j
n ln

f j
n the sample entropy and Var(Ĥ) the variance of Ĥ . Let us assume

that all events appear at least once. Then, E( ˆVar) = Var(Ĥ) + O(n−4), where

V̂ar = 1

n

⎛
⎝∑

j

p̂ j ln
2 p̂ j − Ĥ2

⎞
⎠ + 1

n2

⎡
⎣∑

j

p̂ j ln
2 p̂ j − Ĥ2 − MĤ

−
∑
j

ln p̂ − M

2
+ 1

2

⎤
⎦ + 1

n3

⎡
⎣∑

j

p̂ j ln
2 p̂ j − Ĥ2 − MĤ

−
∑
j

ln p̂ j − Ĥ

3

∑
j

1

p̂ j
− 1

3

∑
j

ln p̂ j

p̂ j
− 1

12

∑
j

1

p̂ j
− M2

4
− M

2
+ 5

6

⎤
⎦ .

(3)

The proof of Theorem 1 is in Appendix C. The proof is based on Lemma 1 for
the variance of the sample entropy Var(Ĥ) given in Appendix B. All propositions
used to prove Lemma 1 are in Appendix A. In brief, we use a recursive formula for
the central moments of the multinomial distribution of ( p̂1, p̂2) in Proposition 1. We
find an explicit expression for the expectation of p̂2 ln2( p̂) that appears in Ĥ2 using
the Taylor expansion in Proposition 4. Using the explicit formulas for the central
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moments of both binomial and multinomial distributions, we provide a formula to
compute Var(Ĥ) = E(Ĥ2) − E(Ĥ)2.

In Theorem 1, we assume that all the events appear in the sequence at least once.
Under this assumption, M is defined as the number of all different events. We discuss
this assumption in the remark below.

Remark 1 The number of different events appearing at least once is defined as M̂ =
M − ∑M−1

j=0 I { p̂ j = 0}, where I is the indicator function. It is

E[M̂] = M −
M−1∑
j=0

(1 − p j )
n .

The error term
∑M−1

j=0 (1 − p j )
n attains its minimum when all p j = 1

M . The
error grows as the probability pi approaches 0. However, such an event with pi ≈ 0
does not greatly affect the entropy value, since p ln p → 0 as p → 0. We can fix
the minimum expected value of the error attained when all probabilities have equal
values. To this aim, we introduce the following rule. The sequence length is taken such
that the minimum error is less than 0.01. With this choice, one event with probability
1
M does not appear in 1 case out of 100. In such a way, we fix the minimum length
of the sequence. Later in the application part, we show that the optimal length of the
interval is greater than its minimum possible value so that all events may appear in
the sequence with a high probability. In formulas,

M−1∑
j=0

(1 − p j )
n < 0.01

M

(
1 − 1

M

)n

< 0.01

n >
ln 0.01

M

ln M−1
M

nmin = � ln 0.01
M

ln M−1
M

�.

2.3 Hypothesis testing

Using sample entropy, we want to introduce a procedure to test if two estimates are
statistically different or not. To this end, consider two sequenceswith entropyvalues H1
and H2. Let be Ĥ1 and Ĥ2 the corresponding sample entropy estimates. The variance
of sample entropy estimates is Var1 and Var2, respectively, as given in Theorem 1. We
can define both the null and the alternative hypotheses as follows.

H0 : H1 = H2

Ha : H1 �= H2
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Fig. 1 Illustration of piecewise constant entropy

Under the null hypothesis, the z-score

z = Ĥ2 − Ĥ1√
V̂ar2 + V̂ar1

(4)

is distributed with zero mean and variance equal to 1.
We rejectH0 if |z| is larger than the quantile associated with some confidence level,

here set equal to 99% of confidence. The quantile is then defined empirically as in
Sect. 3.1.

2.4 Determining window length

In testing for entropy changes, we assume that there exist regimes in time series
described by different values of the Shannon entropy.We consider a piecewise constant
function as representing the regime-switching process for the Shannon entropy. A few
examples of such a piecewise constant function are in Fig. 1. Such processes with step
functions for entropy have been studied in Reif and Storer (2001) with the goal of
introducing an optimal encoding for non-stationary sources. When we do not know a
priori the regime length, we must devise a method to optimize the window length w,
i.e., the length of the rolling window for time-varying entropy estimation. Here, the
window length is optimized based on a bias-variance trade-off. The intuition is simple:
(i) Inside a regime of constant entropy, we can increase the window length to improve
the estimation of the entropy value by reducing the variance of the error; (ii) however,
when the window length is larger than the regime itself, the estimation error increases
because of the bias effect associated with a change in the entropy value. This impacts
also the genuine detection of entropy changes based on the proposed testing procedure.

In practice, we apply the test to all adjacent non-overlapping intervals. Then, we
choose a window length that allows the detection of the maximum z-score. More
precisely, we maximize the following objective function f (w)3

3 We use a Python implementation of the method based on the function scipy.optimize.minimize_scalar
with method=bounded and xatol= 1 in Python v.3.9.5.
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f (w) =
{
max(|z(w)|), if %{|z(w)| > q99} > 1%

− 1
w

, otherwise
(5)

where q99 is a 99% quantile for the empirical distribution of z.
A key part of the objective function f (w) is the maximization of the absolute value

of the z-score, max(|z(w)|). This emphasis on maximizing the z-score for testing non-
overlapping intervals can be interpreted in terms of the bias-variance trade-off. When
using a rolling window with a large length, it may encompass regimes with different
entropy values. Consequently, sample entropy becomes biased because it is computed
by estimating empirical frequencies from several stationary processes simultaneously.
Therefore, large values of w may not be able to catch the largest change in entropy
value reflected by the magnitude of z-score.

Small values of w give small values of the z-score since sample entropy variance
increases with the decrease in the window length. Indeed, taking a short window
length w implies a large variance of sample entropy. Consequently, it may become
challenging to distinguish a genuine change in entropy from estimation errors when
w is small, potentially failing to detect significant changes in entropy values. On the
other hand, if the process at some period is stationary, we aim to take w as large as
possible to improve the accuracy of the sample entropy.4 Thus, we find an optimal
parameter w maintaining a balance between the bias and the variance of the sample
entropy.

The second line of the objective function in Eq. 5 is introduced to determine the
window length in the case of a stationary process with no regimes of entropy. In terms
of the bias-variance trade-off, if the rollingwindow covers a period of constant entropy,
the error from a bias is eliminated, and the variance decreases with the growth of the
window length. If we can not reject the null hypothesis, we want to choose w as large
as possible. Thus, we maximize a monotonically increasing function, − 1

w
. Since we

are interested in detecting changes in entropy, max(|z|) is always nonnegative, and
− 1

w
is always negative. Some plots of different objective functions for various values

of w are in Figs. 3 and 5.
In applications, the proposed method for determining the optimal window length

is applied to a training set to fix the optimal length to be used in the testing set.
We set the upper bound for the window length as nmax = 	 n

2 
, where n is the total
length of the sequence. When the optimal window length is not the maximum, we
interpret this as the presence of a regime-switching process for the Shannon entropy.
As a result, we consider rolling window estimates of the Shannon entropy to find the
changing pointswith the statistical procedure introduced above.Notice that the entropy
estimator, which is based on the assumption of stationarity of the data-generating
process, remains consistent within regimes. Such an approach is typical for regime-
switching models, see, e.g., (James et al. 1987; Yao and Au 1989).

4 Equations (B6) and (B7) show that the larger the length of a sequence, the less the variance and the
downward bias of the sample entropy.
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2.5 Dataset

We consider three meme stocks that became popular in late 2020 and 2021: GameStop
(GME), Bed Bath & Beyond (BBBY), and AMC Entertainment Holdings (AMC).5

In addition, we consider three well-known IT companies: Apple (AAPL), Salesforce
(CRM), and Microsoft (MSFT). The dataset reports the stock price Pt at a one-minute
frequency for each trading day from 9:00 to 15:59, covering the period from 1.1.2019
to 20.07.2021. Once a return time series is built by defining r̃t = ln Pt/Pt−1, we define
a 4-symbol alphabet as:

st =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, rt ≤ Q1,

1, Q1 < rt ≤ Q2,

2, Q2 < rt ≤ Q3,

3, Q3 < rt ,

(6)

where Q1, Q2, Q3 are the quartiles of the empirical distribution of returns {rt }. Here,
{rt } are the price returns after filtering out data regularities from {r̃t }: intraday volatility
pattern, heteroskedasticity, price staleness, and microstructure noise, see Shternshis
et al. (2022) for a precise description of the filtering process. Data regularities (see, e.g.,
Cont 2001) are empirical properties of the price returns associated with some stylized
facts that can jeopardize themeasure of the Shannon entropy (because of some spurious
effects for the symbolization) with no implications to market efficiency. For instance,
the intraday volatility pattern relates to intraday returns exhibiting high volatility at the
market’s opening and closing, loweringduring themiddle of the day (Woodet al. 1985).
This heterogeneous pattern would significantly impact the time series of symbols in
Eq. 6, which are defined considering the quartiles of the unconditional distribution of
returns over some training period. Similar issues also arise when considering other
data regularity patterns. We refer to Shternshis et al. (2022) for a complete description
of the phenomenon.

3 Simulation study

3.1 Empirical quantile

In this section, we provide a method to find the quantiles of the z-score distribution
in Eq. 4. The larger the M (the number of different events), the closer the sample
entropy (as a sum of random variables) is to a normal distribution. (Basharin 1959)
proved the asymptotic normality for the distribution of sample entropy. However, if all
probabilities are equal, the distribution of re-scaled sample entropy converges to a χ2-
distribution, see Zubkov (1974). Consequently, quantiles from a normal distribution
are appropriate when the entropy value is not close to its maximum. (In other words,
all probabilities for the events are almost equal.) As such, when the entropy is close
to the maximum (like in the case of financial data), using the normal distribution to

5 We use a proprietary intraday financial time series dataset provided by kibot.com.
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define the confidence bound of the test lowers the performance.6 To show this, we set
large values for both the length of a sequence and the length of blocks.

We perform N = 2 × 104 Monte Carlo simulations. We simulate two sequences
with length n = 2 × 105 of 4 symbols with equal probabilities. We set k = 7 so
that M = 47 = 16384. When probabilities are equal, the expression for the variance
(Eq. B6) becomes

Var(Ĥmax) = M − 1

2(n − k + 1)2
+ M2 − 1

6(n − k + 1)3
(7)

We use this value as given instead of estimating the variance from the sequence. We
can see that the ratio between two terms of Eq. 7 is 3(n−k+1)

M+1 that can be controlled
by the choice of k and M , respectively. Then, for two sequences we find the value
of �Ĥ = Ĥ2 − Ĥ1. Since �Ĥ is the difference between two independent variables,
the variance of the difference is 2Var(Ĥmax). The empirical 99% (95%) quantile of
the empirical distribution of |z| is 3.30722 (2.54542). Thus, even if both the length
of the sequence and the number of blocks are quite large, the tails of the empirical
distribution are thicker than those of a normal distribution. For this reason, we use
the empirical quantiles obtained with Monte Carlo simulations in the analysis below.
If the absolute value of the z-score is larger than such a quantile, we consider the
difference between the two entropy values as statistically significant and reject the
null hypothesis of equal entropy values.

Below, we fix k = 4. Thus, the maximum of the sample entropy is k ln |A| = 4 ln 4,
M = 256. Now, we test the empirical quantiles found in this section for shorter
sequences. Here, we keep N = 2 × 104 and set n = 2 × 103. Using the quantiles
obtained above, the false-positive rate is 1.025% (4.86%) for the level of significance
α = 0.01 (α = 0.05).7 We consider these results as acceptable for retaining the
computed values of quantiles for the rest of the paper. Thus, we take q99 from Eq. 5
as 3.30722.

3.2 Power and size of the test

In this section, we control for power and size of the proposed testing procedure. We
consider a 4-symbol process defined as follows. The probability of repeating a symbol
is τ . All other probabilities are equal, that is, the probability of observing 0 after
1 is 1−τ

3 . To compute the 2-th-order entropy, H2(τ ), 24 = 16 probabilities px1x2 ,
x1, x2 ∈ A are used. Four of them, when x1 = x2, are equal to τ

4 . The other twelve
probabilities are 1−τ

12 . Therefore, the value of the 2-th-order entropy is

H2(τ ) = −
(

τ ln
τ

4
+ (1 − τ) ln

1 − τ

12

)
(8)

6 Notice that the difference between two χ2-distributions (as in our case) is no longer a χ2-distribution.
The density function of the difference takes a complex form and is derived in the article (Mathai 1993)
(Theorem 2.1). Making a statistical test based on χ2-distribution of sample entropy without subtraction is
left for future research.
7 Empirical quantiles from this experiment are equal to 3.31684 and 2.52907, respectively.
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Table 1 The power of the
hypothesis testing with
different τ

τ H(τ ) Power (%)

0.28 5.5405 56.28

0.29 5.53692 94.556

0.3 5.53237 99.915

0.31 5.52688 100

Power is the probability to reject H0 given that the null hypothesis is
false. The results are obtained with 2 × 104 Monte Carlo simulations

and the sample entropy computed with k = 4 is H(τ ) = 2H2(τ ) since the dependency
between symbols is completely described by blocks of length 2.

The larger τ (considering τ > 1
4 ), the lower the entropy. τ = 1

4 corresponds
to equiprobable symbols. In this case, the entropy value is maximum. In order to
assess both the power and the size of the test, we build two sequences with H( 14 )

and length n = 10, 000. We compute the sample entropy variance using Eq. 3 and
perform the hypothesis testing using Eq. 4. The size, namely the false-positive rate, is
0.86%. This value has been obtained by generating two sequences (as described above)
2× 104 times. Now, to measure the power of the test, we simulate one sequence with
H( 14 ) = 4 ln 4 ≈ 5.54518 and a second one with a different entropy value. The results
are in Table 1.

3.3 Process with constant entropy

In this section, we consider a rolling window approach for a time-varying estimation
of entropy combined with the statistical test for equal entropy values between two
subsequent intervals. First, we consider the case of a stationary process having a
constant entropy value for the whole period. We perform a test for equal entropies
using the empirical quantile values obtained in Sect. 3.1. We simulate a time series
containing four equiprobable symbols with a length N = 2× 107. We divide the time
series into overlapping intervals of length n = 2 × 103, and then, we compute the
entropy value for each interval. Finally, we examine all differences in entropy values
with a gap equal to n, ensuring that there are no overlapping blocks between two
intervals. The false-positive rate, based on the 99% (95%) empirical quantile, is found
to be 0.9976% (4.4608%), which closely aligns with the significance level.

3.4 Piecewise constant process

Now, we consider a process defined for a 4-symbol alphabet as follows. The length
of a sequence is N = 30, 000. We set k = 4, M = 256. For this sequence, nmin =
�ln 0.01

M /ln M−1
M � = 2594 and nmax = 	 N−k+1

2 
 = 14998. We divide the sequence
into three parts as shown in Fig. 1a. The first part is of length 10, 000. The first and
the last parts display the maximum entropy value characterized by τ0 = 1

4 and four
equiprobable symbols. The middle part is of length l and entropy H(τ ) as in Eq. 8.
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Fig. 2 Optimal window length for different values of l. Themean and standard deviation (std) are calculated
over 100 iterations

Time series as a concatenation of sequences with constant entropy values were
considered in Reif and Storer (2001) and defined as “sequences with stationary ergodic
sources.” In the paper, the authors show that the estimated entropy over the whole
period is a linear combination of the entropy values of each stationary source. This
result has been obtained using a method for asymptotically optimal compression of
the sequence. The method is a modification of the LZ77 algorithm (Ziv and Lempel
1977). Apart from Eq. 2, one way to define the entropy of a stationary process is by
using compression methods and optimal encoding (Ziv 1978).

In this case, the variance of the sample entropy is time-varying. As a consequence,
we estimate the variance by Eq. 3. We apply the method for determining the optimal
window length,wopt, as described in Sect. 2.4. First, we fix τ = 0.5. By varying l in the
interval {nmin, 10, 000} with an increment of 100, we estimate the optimal window
length and plot it in Fig. 2. The figure shows that the optimal window length is a
consistent estimation of the length of the interval. Therefore, the optimal length of the
rolling window allows us to estimate the entropy value in the middle interval in the
most accurate way because of the bias-variance trade-off explained above.

Figure 3 shows the plot of the objective function (Eq. 5) for 3 random iterations
with different values of l. All plots have one global maximum. The larger l, the larger
the argument of the maxima corresponding to wopt. When l = 10, 000 and w is close
to nmax, the percent of statistically significant changes in entropy is less than 1%, and
thus, f (w) becomes negative. We also show in Fig. 4 how sample entropy estimates
are obtained by rolling a window of length l. We obtain a time-varying sample entropy
because of the interval with a low entropy value in the middle of the sequence. Sample
entropy attains itsminimumafter t = 10, 000 stepswhen the rollingwindow coincides
with the interval in the middle. The first and the last values of sample entropy are
calculated on the sequences with the constant entropy at the maximum. When the
rolling window covers two intervals with different entropy values, sample entropy is
between the maximum and minimum, showing a monotonic decrease or increase. The
lowest entropy value corresponding to the interval in the middle is estimated once the
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Fig. 3 Realizations of the objective function for different values of l in 3-step process

Fig. 4 Realizations of the sample entropy for different values of l in 3-step process

sample entropy attains its minimum. We follow the same intuition in the empirical
analysis below in defining the entropy value within an interval between two changing
points.

When the data-generating process is stationary displaying a constant entropy, the
range of the objective function may be negative. The objective function of one real-
ization of the stationary process (τ = τ0) is given in Fig. 5. Since the function is
monotonically increasing, the maximum is attained at nmax.

Additionally, we maintain a fixed value of l = 10, 000 and vary τ from 0.25 to
0.5 with the increment of 0.01 for the process with 3 steps from Fig. 1a. For each τ

within this range, we compute the optimal window length, see Fig. 6. When τ = 0.25,
the data-generating process is stationary, and w is close to the maximum. This aligns
with our intuition in defining the optimality criterion for the window length: A larger
window leads to a more accurate entropy estimation because of a reduced variance of
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Fig. 5 Objective function for one realization of the stationary process

Fig. 6 Optimal window length for different values of τ in 3-step process. The mean and standard deviation
(std) are calculated over 400 iterations

the estimation error in the case of a stationary process. However, the deviation of wopt
when τ = 0.25 is high because of the first type error for the hypothesis testing. Even
if the process is stationary,H0 may be rejected more than in 1% of cases, resulting in a
positive value for f (w). Such a significant deviation can be reduced using Bonferroni
or Šidák corrections (Šidák 1967) if the distribution of the z-score is known. When
the entropy in the middle slightly differs from the maximum (τ = 0.26), the method
may fail to detect a change in the entropy value, and wopt is close to the maximum.
As τ increases, wopt becomes closer to the length of the interval in the middle, and
the standard deviation of wopt decreases accordingly.

Finally, we consider the case of a process with piecewise constant entropy values
as in Fig. 1b. We fix the length of the first interval as 10, 000 and vary the length of
the second interval l from nmin to 10, 000, with τ1 = 0.5. The last two intervals have
equal lengths l2 = 10000 − l/2. We consider τ2 = 0.4 and τ3 = 0.3. The optimal
window lengths are shown in Fig. 7a, b.
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Fig. 7 Optimal window length for 4-step process. The mean and standard deviation (std) are calculated
over 100 iterations

Fig. 8 Realizations of objective function for different values of l and τ for 4-step process

When (τ2, τ3) = (0.4, 0.3), the optimal length is close to wopt = 10000, corre-
sponding to the length of the first interval. A local maximum of objective function
explains a slight downward bias close to wopt = l = 7000. We accomplished a sys-
tematic study of the objective function when l = 7000 in Fig. 8a obtained for three
representative simulations (over a total of 100 simulations, all of them qualitatively
equivalent). When (τ2, τ3) = (0.3, 0.4), the optimal window length is close to l, when
τ1 for l > 4000. For small values of l, the large deviation results from two peaks of
objective functions at l and l2.We plot examples of objective functions when l = 3000
and l2 = 8500 in Fig. 8b. The global maximum occurs at w = 3000; however, local
extrema are observed at w = 8500.

4 Empirical application: the case of meme stocks

4.1 Market efficiency

Amarket in which prices always fully reflect all available information is said efficient
(Fama 1970). We assume the weak form of the efficient market hypothesis, for which
the information set is obtained by considering historical observations only. That is,
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if a market is efficient in the weak form, then historical prices cannot be used to
predict future price realizations more accurately than the current price value, namely
the martingale hypothesis. For efficient markets (in the weak form), all information
about past prices is already incorporated into the current price. Therefore, the next
realization is going to contain all new information that was not available one time
step before. As noted by Billingsley (1965) for symbolic dynamics, the amount of
information received with a new symbol (the discretized price in our case) is the same
as the amount of uncertainty before obtaining that symbol. In other words, larger
uncertainty about the upcoming symbol corresponds to getting more information at
the moment of its occurrence. In practice, the maximum value of entropy must reflect
the market efficiency hypothesis. This principle has been considered in a range of
research works, see, e.g., (Gulko 1999; Molgedey and Ebeling 2000; Risso 2008). As
stated in (Eom et al. 2008), the lower the degree of efficiency, the more predictable the
price. The authors have concluded that the predictability of prices correlates with the
Hurst exponent, which is another measure of market efficiency (Cajueiro and Tabak
2005; Morales et al. 2012; Sensoy 2013).

Any deviations of the entropy estimate from the maximum can be considered a
signal of market inefficiency. However, not all variations can be interpreted as market
inefficiency because of the estimation errors, e.g., downward estimation bias (Schür-
mann and Grassberger 1996). To test if sample entropy differs significantly from the
maximum, confidence bounds can be defined by using numerical methods (Calcagnile
et al. 2020; Shternshis et al. 2022) or introducing statistical testing procedures (Brouty
and Garcin 2023). In this context, our primary interest is identifying changes in the
degree of market efficiency. Therefore, we focus on testing the difference between
entropy values of two adjacent non-overlapping time intervals. If a market is efficient
and the entropy of the price returns is always at the maximum, the hypothesis H0
cannot be rejected. Rejection of H0 for two non-overlapping intervals implies that
the entropy value drops significantly below the maximum. Low entropy values thus
indicate a significant degree of inefficiency in the sense of price predictability that can
be used for devising (statistical) arbitrage strategies. In fact, we validate this inter-
pretation by showing how to devise profitable trading strategies based on Shannon
entropy as an indicator, namely considering sequences of symbols that are the most
likely to appear and trading by exploiting them.

In other words, we estimate entropy as a measure of efficiency/no predictability. If
the sample entropy is consistent with the maximum, the sequence is considered fully
random. In order to measure Shannon entropy for financial time series, we discretize
price returns as in Eq. 6. It is worth noting that we distinguish predictability stemming
from market inefficiency and due to the stylized facts of price returns. Such patterns
make prices more regular but do not imply genuine patterns of price predictability.
That is, no trading strategy based on them is profitable. At the same time, a signal of
market inefficiency indicates the presence of arbitrage opportunities, net of transaction
costs. If the market is inefficient, there are opportunities to profit from predictability
patterns. To ensure that we focus on such predictability patterns for potential profit,
we apply a method to filter out data regularities from price returns before discretizing
them, as discussed in Sect. 2.5.
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Table 2 Optimal window length and hypothesis testing for meme and IT stocks f (wopt) are calculated on
the training set

Stock wopt f (wopt) nmax Number of tests % of increases % of decreases

GME 6707 3.881 14387 89909 6.31 13.9

BBBY 10218 4.975 22542 89248 8.29 8.77

AMC 5845 5.052 16374 93639 6.80 8.66

AAPL 20313 9.323 33865 104531 1.43 5.87

CRM 44321 −2.256·10−5 44322 55189 32.0 0

MSFT 12539 5.438 41413 121887 13.1 5.97

The number of tests is the amount of adjacent time intervalswith lengthswopt in the testing set. The increases
and decreases are statistically significant changes in entropy between two adjacent intervals. Significant
changes are defined with 0.99 level of confidence

The deviation from market efficiency implies that past prices provide useful infor-
mation in predicting the next price value. That is, market inefficiency implies a
violation of a martingale model for the price and the existence of (statistical) arbi-
trage opportunity. We test time-varying regimes of entropy for meme and IT stocks
in Sects. 4.2 and 4.3, respectively. Additionally, we explore a straightforward trading
strategy based on sample entropy and compare the average profits obtained during
regimes with high and low entropy values in Sect. 4.4.

4.2 Meme stocks

Here, we focus on three stocks: GME, BBBY, and AMC. We consider data from the
year 2019 as a training set, while the period from 01.01.2020 to 20.07.2021 is used
as a testing set. First, we filter out data regularities. We define an intraday volatility
pattern, fit an autoregressive moving average (ARMA) model, and find an optimal
window length,wopt, using the training set. Volatility and the degree of price staleness
are defined minute by minute. The ARMA model helps in removing microstructure
noise, while volatility estimation addresses heteroskedasticity. Quartiles Q1, Q2, and
Q3 used for discretization in Eq. 6 are defined using the return time series of the
training set after filtering out the data regularities. All the details about the filtering
process can be found in Shternshis et al. (2022).

We compute the Shannon entropy of the discretized sequence st of the testing set
using a rolling window of length wopt. When comparing the entropy estimates for two
adjacent intervals, we can observe three possible outcomes: (i) entropy decreases, (ii)
entropy increases, and (iii) entropy does not change significantly. We present results
for each stock in Table 2. Each test has a level of confidence equal to 0.99. We plot
the sample entropy, price, and trading volumes in Fig. 9 for the stock GME. Plots of
BBBY and AMC stocks are in Appendix D. In each plot, we have highlighted points
where significant changes in entropy occur. Specifically, (i) red dots indicate statis-
tically significant decreases in the entropy value, (ii) green dots indicate statistically
significant increases in the entropy value, and (iii) blue dots indicate no statistical
changes.
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Fig. 9 Entropy, price, volume of the GME stock. Dots correspond to statistically significant changes in
entropy: red for drops in the entropy value, and green for rises (color figure online)
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Fig. 10 Sample entropy for GME and corresponding piecewise constant entropy

Similar colors are used also for the dynamics of both the price and the trading
volume. These visual representations help us for a better understanding of the rela-
tionship between entropy, price, and trading volumes. For GME, there are two series
of significant drops in the entropy value. They start from the intervals [17.07.20 15:46
to 14.09.20 15:34] and [7.12.20 15:38 to 19.01.21 09:42] where sample entropies
are calculated. For BBBY, there are three series of decreases. They start from the
intervals [06.03.20 13:50 to 05.05.20 09:54], [10.12.20 11:47 to 28.01.21 10:59],
and [06.05.21 15:16 to 21.06.21 14:45]. For AMC, there are four series of decreases
starting at [05.03.20 15:13 to 17.04.20 12:47], [10.08.20 13:08 to 08.09.20 11:27],
[08.03.21 14:09 to 30.03.21 10:26], and [05.05.21 14:46 to 27.05.21 15:10]. The
time intervals highlighted in bold correspond to sharp increases in price values. These
observations help us in identifying critical moments in the market, shedding light on
the dynamics of the stocks.

Based on the simulation analysis presented in Fig. 4, we interpret the time-varying
pattern of the entropy estimates as a piecewise constant pattern for the entropy value.8

As such, the piecewise constant sample entropy between two changing points takes
a value equal to the maximum or minimum of the time-varying estimates within the
regime. For example, the dynamics of the sample entropy for GME is characterized by
two periods of low entropy and three periods of high entropy, resulting in 6 different
regimes as shown in Fig. 10.

8 This interpretation is consistent with the assumption of stationarity for the data-generating process within
each regime of entropy.
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4.3 IT stocks

For the sake of comparison, we repeat a similar analysis for the three IT stocks: Apple,
Salesforce, and Microsoft. The entropy estimates are shown in Fig. 11. The optimal
window lengths are in Table 2.

The sample entropy of price returns for these stocks displays time-varying behavior.
This indicates that the level of unpredictability in price movements changes over time.
Notably, the entropy for these stocks does not exhibit such a steep decline as observed
in the case of meme stocks. This implies that the meme stocks may have experienced
more substantial changes in their price predictability compared to the IT stocks. For
the stock CRM in 2019, the entropy of price returns time series is considered constant,
as indicated by a negative value of the objective function f (wopt).

4.4 Predictability of price returns

In this section, we compare the levels of price predictability based on low and high
entropy values. We employ empirical frequencies to devise a simple trading strategy.
We assume no transaction costs and high liquidity.We compare the return distributions
for the strategy obtained in intervals with low and high entropy values. Through this
comparison, we show that a low degree of market efficiency corresponding to a sig-
nificantly low entropy value is associated with a profit larger than the average return
of the same strategy in efficient periods. This analysis underscores the relationship
between market efficiency, price predictability, and potential profitability of statistical
arbitrage strategies, highlighting that highly efficient markets tend to exhibit less price
predictability and, consequently, yield lower average trading profits.

Here, we consider only intervals with significant changes in the entropy value (e.g.,
red and green periods in Fig. 9). We split each interval into two equal parts: The first
half is used for estimating the empirical probabilities of blocks of four symbols, while
the second half is for implementing the trading strategy.

We use the following criterion to classify each block in the first half: (i) If the
empirical probability of obtaining 2 or 3 (i.e., the price goes up) for the fourth symbol
given the sequence of the first three symbols is larger than 1

2 , the sequence (of three
symbols) is defined as B(uy); if the empirical probability of obtaining 0 or 1 (i.e., the
price goes down) for the fourth symbol given the sequence of the first three symbols
is larger than 1

2 , the sequence (of the three symbols) is defined as S(ell). Then, in
the second half of the interval, we implement the following trading strategy: Given
three symbols, (i) we buy the stock if such a sequence is B, then we sell it one minute
later; (ii) we short the stock if the such a sequence is S, then we close the position
one minute later. The net of the two trades defines the strategy’s profit or return.
The strategy is implemented after filtering out data regularities in the time series of
returns. We plot the distributions of the strategy’s returns for all six stocks under
investigation, distinguishing intervals of high and low entropy, in Fig. 12. We also
show the distributions of the strategy’s returns computed for the true price dynamics
(without filtering out data regularities) in Fig. 13. We then average such returns by
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Fig. 11 Entropy of IT Stocks. Dots correspond to statistically significant changes in entropy: red for drops
in the entropy value, and green for rises (color figure online)
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Fig. 12 Histograms with 25 bins for profits from the simple trading strategy after filtering out data regu-
larities. Green and red (blue in the case of CRM) bins correspond to significantly high and low entropy,
respectively (color figure online)

distinguishing between high and low entropy values. The average profit is shown in
Table 3.

In the first instance, the empirical probabilities used for estimating sample entropy
are computed after removing heteroscedasticity and linear effects described by the
ARMA model. Assuming that the price returns are normal, i.e., r ∼ N (0, 1), the

maximum profit obtained by perfect forecasting of price direction is
√

2
π

≈ 0.798.
For all stocks except BBBY, the profits obtained for intervals with relatively low
entropy values are statistically higher than the ones obtained for the other intervals.
In particular, the difference between averaged profits obtained during intervals with
low and high entropy values is significant using Welch’s t test (Welch 1947), with a
significance level of 0.01.
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Fig. 13 Histograms with 25 bins for profits from the simple trading strategy before filtering out data
regularities. Green and red bins correspond to significantly high and low entropy, respectively (color figure
online)

For the stock CRM, we compare intervals shifted back in time by the length of the
rolling window wopt with intervals having high entropy values. For the stock BBBY,
the difference in profits for two types of intervals is visible from the tails of distributions
around values of 0.15 and 0.22 in Fig. 12. Moreover, we observe a substantial profit
disparity between meme and IT stocks during predictable intervals. This observation
aligns with the fact that the entropy values for meme stocks are much lower than the
minimum entropy value observed for IT stocks. Higher returns for meme stocks are
also expected ex post because of the turbulent period experienced by the market due to
the coordination of many retail investors in taking long positions and the consequent
reaction of professional investors covering their short positions, a combination that
drives the prices of meme stocks to their all-time highs.
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Table 3 Profits for the simple trading strategy applied to price returns. Window length is obtained by using
the testing set

Stock Window length Average profit with high entropy Average profit with low entropy

GME 30622 1.23 × 10−5 4.65 × 10−5

AMC 17900 3.43 × 10−5 1.72 × 10−4

BBBY 20114 −1.06 × 10−6 −1.22 × 10−5

AAPL 9532 1.27 × 10−6 3.19 × 10−7

MSFT 19666 5.08 × 10−7 3.97 × 10−6

CRM 15356 −1.51 × 10−6 4.63 × 10−6

From the point of view of market efficiency, we can conclude, however, that meme
and IT stocks behave similarly: Higher profit from the statistical arbitrage strategy
driven by the Shannon entropymeasure corresponds to time intervals when the entropy
value is significantly low. Based on the obtained results, we show how the entropy
measures are associated with the degree of market efficiency; in particular, a measured
violation of themarket efficiency hypothesis in theweak form is related to the existence
of statistical arbitrage opportunities.

We show a similar analysis for the price returns without filtering out data regulari-
ties. Low entropy for price returns without filtering out data regularities may be driven
by heteroscedasticity or bid-ask spread. However, for four of the six stocks, the aver-
age profit is significantly higher during periods with low entropy than during periods
with high entropy. P values ofWelch’s t test are equal to 1.63×10−13 or smaller, thus
indicating a significant difference between the two averages for the profits with low
and high entropy. We show the results in Table 3. The histograms with the distribution
of the strategy return are in Fig. 13.

4.5 Quarterly training sets

A possible explanation for higher predictability associated with a drop in the entropy
value may be related to some non-stationarity patterns, for example, a change in the
structure of data regularities. For instance, the growing popularity of meme stocks
could lead to shifts in the intraday volatility pattern from 2019 to 2021. If the behavior
of traders has evolved during this period, the intraday volatility pattern estimated in
the training set may no longer effectively filter out the data regularity present in the
testing set. To address this issue and to filter out data regularities more accurately, we
update our estimation of the intraday volatility pattern and fit an ARMA model using
quarterly intervals. The prices from the first quarter of 2019 are also used to filter price
return time series during both the first and the second quarters of 2019. We determine
the optimal window length using data from the year 2019. The results of this approach
are shown in Table 4, and the corresponding figures are in Appendix E.

In all six cases, entropy still exhibits time-varying behavior. Compared to the pre-
vious setting where the training set covers one year, there is an increase in the number
of statistically significant changes in entropy for the stocks GME and AAPL. Addi-
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Table 4 Optimal window length and hypothesis testing for stocks using quarterly training sets

Stock wopt f (wopt) nmax Number of tests % of increases % of decreases

GME 7240 15.351 14343 89042 22.7 12.3

BBBY 20673 25.432 22596 64582 5.87 17.6

AMC 8060 14.062 16343 89855 7.78 13.4

AAPL 21515 24.064 33849 104809 23.8 6.86

CRM 27647 5.027 44287 88858 9.23 2.32

MSFT 35462 8.602 41378 76696 31.6 0.01

f (wopt) is calculated on the training set. The number of tests is the amount of adjacent time intervals with
lengths wopt in the testing set. The increases and decreases are statistically significant changes in entropy
between two adjacent intervals. Significant changes are defined with 0.99 level of confidence

tionally, in all cases, the maximum value of the objective function, which indicates
the extent to which the entropy values of two adjacent intervals differ, also increases.

There are two sequences of statistically significant decreases in entropy value for
the stock GME. They start from entropies calculated at the intervals [03.08.20 12:31
to 22.09.20 13:50] and [29.12.20 11:23 to 27.01.21 13:15]. For the stock AMC,9 there
are three series of low entropy values. They starts from the intervals [25.03.20 12:31 to
13.05.20 14:17], [30.09.20 14:21 to 13.11.20 13:31], and [05.05.21 11:58 to 04.06.21
14:51]. For both stocks, the last interval corresponds to a sharp increase in the prices.
For the stock BBBY, the entropy becomes statistically low starting from [07.08.20
11:10 to 18.11.20 11:16]. As a consequence, entropy was low at the time of the rapid
growth in the price and trading volumes, as we can expect.

Similar conclusions can be drawn also in this case, in particular when we compare
meme and IT stocks. We can conclude that the findings of the previous sections are
robust to possible non-stationarity patterns of data regularities.

5 Conclusions and discussion

We introduce a novel procedure of hypothesis testing to determine if two sequences
defined for the same alphabet of symbols display statistically different entropy values.
In time series analysis, the assumption of stationarity of the data-generating process
is required to ensure the consistency of any Shannon entropy estimator. However,
signals of time-varying entropy are observed in many applications. We combine the
two by studying a piecewise constant process for the Shannon entropy that satisfies
the assumption of stationarity within each regime of the entropy value, including the
possibility of a regime-switching characterized by a statistically significant change for
the entropy value (measured by the proposed hypothesis testing procedure).

The contribution of the paper is threefold. First, we find an analytical approximation
for the variance of the sample entropy that is used in hypothesis testing up to order

9 Nonzero returns in the first three quarters of 2019 are not enough to find the intraday volatility pattern for
all minutes for the stock AMC. This generates missing values in the filtered return time series of the year
2019.
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O(n−4)with n the sample size, that is, one ordermore precise in nwhen comparedwith
previous results by Basharin (1959), Harris (1975). Second, we introduce an unbiased
sample entropy variance estimator for the computation of the variance of entropy
of a sequence. Finally, we propose a novel method to optimize the optimal window
length for entropy estimation in the context of piecewise constant processes. The three
contributions are then combined to define a rigorous statistical testing procedure for
entropy changes in time series. We show that this method is suitable for determining
how to split a sample into subsamples characterized by statistically different estimates
of the Shannon entropy.

We apply the novel method to the return time series of meme stocks GME, BBBY,
AMC. We find intervals when the estimated entropy value is statistically lower than
other periods, thus signaling a higher price predictability. In particular, we focus on
three meme stocks and compare them with three standard IT companies, namely
AAPL, CRM, and MSFT. Our findings reveal that entropy changes occur for all six
stocks during a period spanning from January 2020 to July 2021. Additionally, we
observe that entropy exhibits time-varying behavior in the year 2019 for all stocks
except CRM. The low entropy values identified for each stock indicate a higher degree
of predictability in their return time series, signaling market inefficiency. We corrob-
orate such an interpretation by showing that a drop in the entropy value is associated
with a statistical arbitrage opportunity driven by the Shannon entropy as an indica-
tor. In particular, it is possible to devise a trading strategy based on the empirical
probabilities of the discretized price for statistical arbitrage, net of transaction costs.
Moreover, since the method is based on a preliminary filtering of data regularities
in financial time series, we also show that the results are unchanged when we use
different filtering approaches. In conclusion, our findings support the violation of the
market efficiency hypothesis in the weak form for the US stock market, similarly to
other research works, e.g., (Alvarez-Ramirez and Rodriguez 2021; Giglio et al. 2008;
Molgedey and Ebeling 2000).

Studying the time-varying patterns of entropy values, it emerges that drops in the
entropy value for the meme stocks are more significant than the corresponding ones
for IT stocks, thus indicating the existence of periods of much higher predictability.
This is, in fact, consistent with the turmoil observed in the market during the so-called
GameStop case. Interestingly, for the GME stock, a low level of entropy has been
identified for the discretized price dynamics. Additionally, the drop in entropy seems
to correlate with the observed increase in the trading volume. Interestingly, such a drop
occurred before the boom observed in January 2021. That is some regularity pattern
in the price dynamics that appeared before all the news spread to the market leads to a
statistically significant signal of market inefficiency. Given the observed timing, such
a signal could also be interpreted as an early warning of a turmoil period for the GME
stock. Similar conclusions can be drawn also for the other meme stocks.

Today, financial markets are inherently high dimensional due to the plethora of
instruments composing the portfolios of investors. At the same time, they are highly
challenging to monitor, displaying more and more complex cycles, booms and bursts
of prices, economic bubbles, and so on, all of them representing severe risk factors for
portfolios. In this high-dimensional and complex context, the existence of indicators
of market inefficiency is key. In fact, such signals allow one to anticipate periods of
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turmoil, thus covering or, at least, mitigating the portfolio risk associated with such
events, with potential stabilizing effects for the whole market.
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Appendix A List of propositions

Proposition 1 Central moments of empirical probabilities ( f1
n ,

f2
n ) where ( f1, f2) have

multinomial distribution f M (p1, p2, n) are defined recursively using the formulas
below.

μ0,0 = 1, μ1,0 = μ0,1 = 0, μ1,1 = − p1 p2
n

μm+1,k = p1
n

[
(1 − p1)

∂

∂ p1
μm,k − p2

∂

∂ p2
μm,k + (1 − p1)mμm−1,k − p2kμm,k−1

]

(A1)

where m > 0, k > 0.

Proof:

μM
m,k(p1, p2, n) =

=
∑

x1≥0,x2≥0,x1+x2≤n

(x1 − np1)
m(x2 − np2)

k n!
x1!x2!(n − x1 − x2)! p

x1
1 px22 qn−x1−x2

where μM
m,k is the (m, k)-central moment of the multinomial distribution and q =

1 − p1 − p2. We can show that

∂

∂ p1
μM
m,k = −nmμM

m−1,k + 1 − p2
p1q

μM
m+1,k + 1

q
μM
m,k+1

∂

∂ p2
μM
m,k = −nkμM

m,k−1 + 1 − p1
p2q

μM
m,k+1 + 1

q
μM
m+1,k

Solving the system for μM
m+1,k , we get that

μM
m+1,k = p1

[
(1 − p1)

∂

∂ p1
μM
m,k − p2

∂

∂ p2
μM
m,k + (1 − p1)mnμM

m−1,k − p2knμM
m,k−1

]
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Taking into account that μM
m,k = nm+kμm,k , we obtain the result

μm+1,k = p1
n

[
(1 − p1)

∂

∂ p1
μm,k − p2

∂

∂ p2
μm,k + (1 − p1)mμm−1,k − p2kμm,k−1

]

and by symmetry

μm,k+1 = p2
n

[
(1 − p2)

∂

∂ p2
μm,k − p1

∂

∂ p1
μm,k + (1 − p2)kμm,k−1 − p1mμm−1,k

]

Proposition 2 Central moments of the empirical probability f
n , where f has binomial

distribution B(p, n), are defined recursively using the formulas below.

μ0 = 1, μ1 = 0

μm+1 = p(1 − p)

n

[
mμm−1 + ∂

∂ p
μm

]
,m > 0

(A2)

This is a special case of the previous proposition where p2 = k = 0. It is known as
the Renovsky formula (Riordan 1937).

Proposition 3

E( p̂ ln p̂) = p ln p +
∞∑

m=2

(−1)m

m(m − 1)pm−1μm (A3)

where f ∼ B(p, n), p̂ = f
n and μm is its central m-moment.

The result of Proposition 3 was obtained in (Basharin 1959). It is derived by using the
Taylor expansion around p.

p̂ ln p̂ = p ln p + (1 + ln p)( p̂ − p) +
∞∑

m=2

(−1)m

m(m − 1)pm−1 ( p̂ − p)m

Therefore,

E[ p̂ ln p̂] = p ln p +
∞∑

m=2

(−1)m

m(m − 1)pm−1μm .

Empirical probability f
n , where f has Binomial distribution B(p, n), has the mean p

and the variance p(1−p)
n .
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Proposition 4 Let p̂ = f
n , f ∼ B(p, n). Then,

E
(
p̂2 ln2( p̂)

)
= p2 ln2(p) + (ln2 p + 3 ln p + 1)μ2

+ 4
∞∑

m=1

(−1)m+1
[
ln p − Sm−1 + 3

2

]
μm+2

m(m + 1)(m + 2)pm

(A4)

where Sm = ∑m
k=1

1
k .

Proof: We consider the Taylor expansion of p̂2 ln2( p̂).

p̂2 ln2( p̂) = p2 ln2(p) + 2p ln p(ln p + 1)( p̂ − p) + (ln2 p + 3 ln p + 1)( p̂ − p)2

+ 4
∞∑

m=1

(−1)m+1
[
ln p − Sm−1 + 3

2

]
( p̂ − p)m+2

m(m + 1)(m + 2)pm

This expression can be obtained by noticing that derivatives of p2 ln2 (p) starting from
the third take the form

am ln p + bm
pm

,

where am+1 = −mam ; mbm + bm+1 = am with a1 = 4; b1 = 6. The solution of
the system is am = 4(−1)m+1(m − 1)! and bm = 4(−1)m(m − 1)!(Sm−1 − 3

2 ). The
solution is unique because of the uniqueness of the Taylor series. Taking the expected
value, we get the result.

Proposition 5 Let ( f1, f2) ∼ f M (p1, p2, n) and ( p̂1, p̂2) = ( f1/n, f2/n). Then,

E
(
( p̂1 ln p̂1)( p̂2 ln p̂2)

) = (p1 ln p1)(p2 ln p2) + (ln p1 + 1)(ln p2 + 1)μ1,1

+
∞∑

m=2

(−1)m

m(m − 1)

[
p1 ln p1

1

pm−1
2

μ0,m + p2 ln p2
1

pm−1
1

μm,0

]

+
∞∑

m=2

(−1)m

m(m − 1)

[
(ln p1 + 1)

1

pm−1
2

μ1,m + (ln p2 + 1)
1

pm−1
1

μm,1

]

+
∞∑

m=2

∞∑
k=2

(−1)m+k

m(m − 1)k(k − 1)pm−1
1 pk−1

2

μm,k

(A5)

where μm,k are (m, k)-central moments associated with empirical probabilities
( p̂1, p̂2).

Proof:

( p̂1 ln p̂1)( p̂2 ln p̂2)
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=
∞∑

m=0

( p̂1 − p1)m

m!
dm

dpm1
(p1 ln p1)

∞∑
k=0

( p̂2 − p2)k

k!
dk

dpk2
(p2 ln p2)

= (p1 ln p1)(p2 ln p2) + p1 ln p1(ln p2 + 1)( p̂2 − p2) + p2 ln p2(ln p1 + 1)( p̂1 − p1)

+p1 ln p1

∞∑
k=2

(−1)k

k(k − 1)pk−1
2

( p̂2 − p2)
k + p2 ln p2

∞∑
m=2

(−1)m

m(m − 1)pm−1
1

( p̂1 − p1)
m

+(ln p1 + 1)( p̂1 − p1)
∞∑
k=2

(−1)k

k(k − 1)pk−1
2

( p̂2 − p2)
k

+(ln p2 + 1)( p̂2 − p2)
∞∑

m=2

(−1)m

m(m − 1)pm−1
1

( p̂1 − p1)
m

+(ln p1 + 1)(ln p2 + 1)( p̂1 − p1)( p̂2 − p2)

+
∞∑

m=2

∞∑
k=2

(−1)m+k

m(m − 1)k(k − 1)pm−1
1 pk−1

2

( p̂1 − p1)
m( p̂2 − p2)

k

Therefore,

E
(
( p̂1 ln p̂1)( p̂2 ln p̂2)

)

= (p1 ln p1)(p2 ln p2) + p1 ln p1

∞∑
k=2

(−1)k

k(k − 1)pk−1
2

μ0,k

+ p2 ln p2

∞∑
m=2

(−1)m

m(m − 1)pm−1
1

μm,0 + (ln p1 + 1)
∞∑
k=2

(−1)k

k(k − 1)pk−1
2

μ1,k

+ (ln p2 + 1)
∞∑

m=2

(−1)m

m(m − 1)pm−1
1

μm,1 + (ln p1 + 1)(ln p2 + 1)μ1,1

+
∞∑

m=2

∞∑
k=2

(−1)m+k

m(m − 1)k(k − 1)pm−1
1 pk−1

2

μm,k

Appendix B Variance of sample entropy

Lemma 1 (Variance of sample entropy)Let us assume that f j , j = 0 . . . M−1, are dis-

tributed as multinomial variables f M (p0, . . . , pM−1, n) and Ĥ = −∑M−1
j=0

f j
n ln

f j
n .

Then,

Var(Ĥ) = 1

n

⎡
⎣−H2 +

∑
j

p j ln
2(p j )

⎤
⎦ + 1

n2

[
M

2
− 1

2

]

+ 1

6n3

⎡
⎣(1 − H)

∑
j

1

p j
−

∑
j

ln p j

p j
− 1

⎤
⎦ + O(n−4)

(B6)
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where H = −∑M−1
j=0 p j ln p j .

Proof:

Var(Ĥ) = E(Ĥ2) − E(Ĥ)2

=
M−1∑
j=0

E( p̂2j ln
2 p̂ j ) +

M−1∑
j=0

M−1∑
i=0,i �= j

E( p̂ j ln p̂ j p̂i ln p̂i ) − E(Ĥ)2

For calculations, we need all moments of orders n−1, n−2, n−3 obtained using
Eqs. A1 and A2.

μ2 = p(1 − p)

n

μ3 = p(1 − p)(1 − 2p)

n2

μ4 = 3p2(1 − p)2

n2
+ p(1 − p) − 6p2(1 − p)2

n3

μ5 = 10p2(1 − p)2(1 − 2p)

n3
+ O(n−4)

μ6 = 15p3(1 − p)3

n3
+ O(n−4)

μ2,1 = − p1 p2(1 − 2p1)

n2

μ3,1 = −3p21(1 − p1)p2
n2

+ 6p21(1 − p1)p2 − p1 p2
n3

μ4,1 = −10p21(1 − p1)(1 − 2p1)p2
n3

+ O(n−4)

μ5,1 = −15p31(1 − p1)2 p2
n3

+ O(n−4)

μ2,2 = p1 p2(1 − p1)(1 − p2) + 2p21 p
2
2

n2

+ p1 p2 − 2p1 p2(1 − p1)(1 − p2) − 4p21 p
2
2

n3

μ3,2 = 10p21 p
2
2(1 − 2p1) + p1 p2(1 − p1 − p2)(1 − 5p1)

n3

μ3,3 = −9p21 p
2
2(1 − p1)(1 − p2) + 6p31 p

3
2

n3
+ O(n−4)

μ4,2 = 3p21(1 − p1)p2((1 − p1)(1 − p2) + 4p1 p2)

n3
+ O(n−4)
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Moments with m + k ≤ 4 coincide with results obtained in Harris (1975), Ouimet
(2021). After summing up E[ p̂ j ln p̂ j ] in Eq. A3 for all j , the expression becomes

E(Ĥ) = −E(
∑
j

p̂ j ln( p̂ j )) = H − M − 1

2n
+ 1

12n2

⎛
⎝1 −

M−1∑
j=0

1

p j

⎞
⎠

+ 1

12n3

M−1∑
j=0

(
1

p j
− 1

p2j

)
+ O(n−4)

(B7)

where H = −∑
j p j ln(p j ), μ2, μ3, μ4, μ5, μ6 are used. Similar estimates of the

bias of sample entropy were obtained in other works, see, e.g., (Harris 1975; Schür-
mann and Grassberger 1996; Victor 2000).

E(Ĥ)2 = H2 + 1

n
[−(M − 1)H ] + 1

n2

⎡
⎣M2

4
− M

2
+ 1

4
+ H

6

⎛
⎝1 −

M−1∑
j=0

1

p j

⎞
⎠

⎤
⎦

+ 1

n3

⎡
⎣H

6

M−1∑
j=0

(
1

p j
− 1

p2j

)
− M − 1

12

⎛
⎝1 −

M−1∑
j=0

1

p j

⎞
⎠

⎤
⎦

The approximation of the second moment of p̂ ln( p̂) from Eq. A4 is

E( p̂2 ln2( p̂)) = p2 ln2(p) + 1

n

(
ln2 p + 3 ln p + 1

)
p(1 − p)

+ 1

n2

[(
5

6
p2 − p + 1

6

)
ln p + 7

4
p2 − 5

2
p + 3

4

]

+ 1

n3

[
1

6

(
p2 − p

)
ln p + p2

3
− p

2
+ 1

12
+ 1

12p

]
+ O(n−4)

The approximation of the covariances from Eq. A5 is

E
(
( p̂1 ln p̂1)( p̂2 ln p̂2)

)

= (p1 ln p1)(p2 ln p2) + 1

n
[−(ln p1 + 1)(ln p2 + 1)p1 p2

+1

2
(p1 ln p1(1 − p2) + p2 ln p2(1 − p1))

]
+ 1

n2

[
5

12
p1 p2(ln p1 + ln p2)

+ 1

12

(
p1
p2

ln p1 + p2
p1

ln p2

)
+ 1

4
(1 + 7p1 p2 − p1 − p2)

]

+ 1

n3

[
1

12
p1 ln p1

(
p2 + 1

p22

)
+ 1

12
p2 ln p2

(
p1 + 1

p21

)

+1

3
p1 p2 + 1

24

(
p1
p2

+ p2
p1

+ 1

p1
+ 1

p2
− p1 − p2

)]
+ O(n−4)

123



Variance of entropy for testing time-varying regimes with… 249

Summing up for all indexes j, i of the second moments and covariances, we get that

E(Ĥ2) = H2 + 1

n

⎡
⎣−H2 +

∑
j

p j ln
2(p j ) − (M − 1)H

⎤
⎦

+ 1

n2

⎡
⎣ H

6

⎛
⎝1 −

∑
j

1

p j

⎞
⎠ + 1

4
M2 − 1

4

⎤
⎦
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+ 1

n3

⎡
⎣ M

12

∑
j

1

p j
+ 1

12

∑
j

1

p j
− 1

12
− M

12
− 1

6
H

∑
j

1

p2j
− 1

6

∑
j

ln p j
p j

⎤
⎦

+O(n−4)

Therefore,

Var(Ĥ) = 1

n

⎡
⎣−H2 +

∑
j

p j ln
2(p j )

⎤
⎦ + 1

n2

[
M

2
− 1

2

]

+ 1

6n3

⎡
⎣(1 − H)

∑
j

1

p j
−

∑
j

ln p j

p j
− 1

⎤
⎦

+ O(n−4)

Appendix C Proof of Theorem 1

We introduce a random variable ˆVar .

V̂ar = 1

n
(
∑
j

p̂ j ln
2 p̂ j − Ĥ2) + 1

n2

⎡
⎣∑

j

p̂ j ln
2 p̂ j − Ĥ2 − MĤ −

∑
j

ln p̂ − M

2
+ 1

2

⎤
⎦

+ 1

n3

⎡
⎣∑

j

p̂ j ln
2 p̂ j − Ĥ2 − MĤ −

∑
j

ln p̂ j−

− Ĥ

3

∑
j

1

p̂ j
− 1

3

∑
j

ln p̂ j

p̂ j
− 1

12

∑
j

1

p̂ j
− M2

4
− M

2
+ 5

6

⎤
⎦

From the proof of Lemma 1, we know that

E(Ĥ2) = H2 + 1

n

⎡
⎣−H2 +

∑
j

p j ln
2(p j ) − MH + H

⎤
⎦ +

+ 1

n2

⎡
⎣H

6
− H

6

∑
j

1

p j
+ 1

4
M2 − 1

4

⎤
⎦ + O(n−3)

and

E(MĤ) = MH + M − M2

2n
+ O(n−2).
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We can show using Taylor series and moments μ2, μ3, μ4 that

E

⎛
⎝∑

j

p̂ j ln
2 p̂ j

⎞
⎠ =

∑
j

p j ln
2 p j + 1

n

⎛
⎝∑

j

ln p j + H + M − 1

⎞
⎠

+ 1

n2

⎛
⎝1

6

∑
j

ln p j

p j
+ M

2
− 1

4

∑
j

1

p j
+ H

6
− 1

4

⎞
⎠ + O(n−3)

and

E

⎛
⎝∑

j

ln p̂ j

⎞
⎠ =

∑
j

ln p j + 1

n

⎛
⎝M

2
− 1

2

∑
j

1

p j

⎞
⎠ + O(n−2).

We get the result by using the equation

E

⎛
⎝− Ĥ

3

∑
j

1

p̂ j
− 1

3

∑
j

ln p̂ j

p̂ j
− 1

12

∑
j

1

p̂ j

⎞
⎠

= −H

3

∑
j

1

p j
− 1

3

∑
j

ln p j

p j
− 1

12

∑
j

1

p j
+ O(n−1)

and substituting all equations in the formula for E(V̂ar).

E(V̂ar) = 1

n

⎡
⎣−H2 +

∑
j

p j ln
2(p j )

⎤
⎦ + 1

n2

[
M

2
− 1

2

]

+ 1

6n3

⎡
⎣(1 − H)

∑
j

1

p j
−

∑
j

ln p j

p j
− 1

⎤
⎦ + O(n−4)

Appendix D Entropies, prices, volumes of BBBY and AMC stocks

Figures 14 and 15 show sample entropies, prices, and trading volumes for the stocks
BBBY and AMC, respectively.
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Fig. 14 Entropy, price, volume of the BBBY stock. Dots correspond to statistically significant changes in
entropy: red for drops in the entropy value, and green for rises (color figure online)
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Fig. 15 Entropy, price, volume of the AMC stock. Dots correspond to statistically significant changes in
entropy: red for drops in the entropy value, and green for rises (color figure online)
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Appendix E: Entropy of Stocks with quarters

Figures 16 and 17 show the sample entropy of stocks obtained after filtering out data
regularities using quarterly sets.

Fig. 16 Entropy of meme stocks
with quarterly training sets. Dots
correspond to statistically
significant changes in entropy:
red for drops in the entropy
value, and green for rises (color
figure online)
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Fig. 17 Entropy of IT Stockswith quarterly training sets. Dots correspond to statistically significant changes
in entropy: red for drops in the entropy value, and green for rises (color figure online)
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