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Abstract

We study the continuous version of a hyperbolic rescaling of a discrete game, called open mancala. The 
resulting PDE turns out to be a singular transport equation, with a forcing term taking values in {0, 1}, 
and discontinuous in the solution itself. We prove existence and uniqueness of a certain formulation of 
the problem, based on a nonlocal equation satisfied by the free boundary dividing the region where the 
forcing is one (active region) and the region where there is no forcing (tail region). Several examples, most 
notably the Riemann problem, are provided, related to singularity formation. Interestingly, the solution 
can be obtained by a suitable vertical rearrangement of a multi-function. Furthermore, the PDE admits a 
Lyapunov functional.
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1. Introduction

The mancala game is a game that, in its open and idealized version, can be described in terms 
of two moves as follows. Suppose to have an infinite sequence of holes on the half-line (0, +∞), 
each hole containing zero or more seeds (always in finite number). Suppose also that the first hole 
is nonempty, that nonempty holes are consecutive and in finite number. The first half-mancala 
move consists in taking all seeds in the first hole (the left-most nonempty hole, numbered 1), and 
sow them in the subsequent holes, one seed per hole. In this way the first hole becomes empty; the 
second half-mancala move consists in a left-translation of one position of all subsequent holes, so 
that the new left-most hole becomes nonempty, and the two half-moves can therefore be repeated. 
Of course, the total mass (i.e., the total number of seeds) is preserved. The open mancala game 
is modeled as a discrete dynamical system, for which several interesting questions can be posed, 
such as the classification of periodic configurations, the optimal number of moves necessary to 
reach a periodic configuration, and so on, see for instance [6] and references therein. The aim 
of this paper is to analyze a continuous version of this dynamical system, which turns out to be 
modeled by a new type of transport equation.

After having introduced a natural discrete time, a suitable hyperbolic rescaling of the discrete 
game and a simple algebraic manipulation (see Section 2 for the details) lead to

u
(k+1)h
ih − ukh

ih

h
= u

(k+1)h
ih − u

(k+1)h
(i−1)h

h
+ 1{

2h≤·≤ukh
h +h

}(ih), (1.1)

where ih, i ≥ 1 integer, denotes the discrete i-th space position, kh, k ≥ 0 integer, denotes the 
discrete k-th time, h is the space grid (equal to the time grid), ulh

jh stands for the number of seeds 
at (jh, lh), and 1A is the characteristic function of the set A ⊂ [0, +∞). The discrete system 
(1.1) is coupled with

u0
ih = u0(ih), i ≥ 1, (1.2)

u0 being the given initial configuration.
It is then natural to consider the following hyperbolic pde, considered as a formal limit of 

(1.1), (1.2) as h → 0+:

{
ut (t, x) = ux(t, x) + 1

(0,u(t,0))
(x),

u(0) = u0.
(1.3)

Notice carefully the {0, 1}-valued discontinuous forcing term on the right-hand side which, given 
any t ≥ 0, depends on the space right trace u(t, 0) of u(t, ·) at x = 0; this space dependent 
forcing depends on u in a nonlinear and nonlocal way, and results the PDE in (1.3), to our best 
knowledge, into a new type of partial differential equation. Observe also that, formally, the total 
mass is conserved:
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d

dt

+∞∫
0

u(t, x) dx =
+∞∫
0

ut (t, x) dx

=
+∞∫
0

(
ux(t, x) + 1(0,u(t,0))(x)

)
dx = −u(t,0) +

+∞∫
0

1(0,u(t,0))(x) dx = 0.

The physical interpretation of (1.3) can be given in terms of mass transportation, as follows. 
Imagine to have an horizontal conveyor belt transporting, at uniform speed, a certain amount of 
sand toward the left; once a slice of sand of height κ reaches the (left) boundary x = 0 and falls 
down, it is uniformly redistributed horizontally for a length κ on the conveyor, and the process 
continues.

From the mathematical point of view, we are facing a homogeneous linear transport equation 
in a “tail” region

T (u) := { (t, x) : t ≥ 0, x > u(t,0) },

where the forcing term is suppressed, and an inhomogeneous transport equation in an “active” 
region

A(u) := { (t, x) : t ≥ 0, 0 < x < u(t,0) },

where the forcing term equals one. Tail and active regions are separated by an interface, a curve 
in time-space in our setting, which is the (generalized) graph of u(·, 0) over R+, and that can be 
considered as a sort of free boundary.

We anticipate here that, interestingly, some similarities with the typical phenomena of entropy 
solutions of nonlinear first order conservation laws (say the Burger’s equation, just to fix ideas) 
appear also for solutions of (1.3), such as possible creation of decreasing jumps, and the validity 
of a unilateral Lipschitz condition [3]. Typically, for Burgers’ equation, increasing jumps disap-
pear instantaneously, while in the present model they are progressively eroded while traveling
toward the origin1 at unit speed (see Figs. 7 and 8). The most surprising phenomenon happening 
in the free boundary of (1.3) is what we have described through an affine transformation (equa-
tion (4.16)) followed by a vertical rearrangement (equation (4.17)), a procedure that reminds 
the “equal area rule” of conservation laws (see [7, pag. 42], and [2]) and that will be carefully 
analyzed in Sections 4.1 and 8. Roughly, it turns out that the free boundary is the (generalized) 
graph G� of a BVloc function � which has to satisfy a nonlocal equation (see (1.6)) that can be 
described in two steps: first the affine transformation forces the creation of a multi-valued graph, 
in correspondence of certain previous parts of the graph of � having slope less than −1 (called 
critical slopes). In a second step, (1.6) reduces the multigraph to the graph of a single-valued 
function by a geometric principle based on a vertical rearrangement (a Steiner symmetrization). 
In turn, from such a genuine function, the solution u can be directly recovered (Remark 5.1). The 
remarkable operation of rearrangement is always necessary at a critical time (Definition 4.2), i.e., 
a time corresponding to the presence of a critical slope, and typically such times are unavoidable.

1 After reaching the origin, they possibly disappear.
3
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In order to define and analyze a solution to (1.3), it is convenient to change variables in the 
obvious way,

� : (t, x) ∈ Iquad → (τ, ξ) ∈ IIoct, τ := t, ξ := t + x, (1.4)

where Iquad := [0, +∞) ×[0, +∞) is the closure of the open first quadrant Iquad, IIoct := {(τ, ξ) ∈
[0, +∞) × R, ξ ≥ τ } is the closure of the open second octant IIoct, and formally consider (1.3)
in the new coordinates, which after integration reads as

û(τ, ξ) = u0(ξ) +
τ∫

0

1(ξ,+∞) (̂u(s, s) + s) ds, (τ, ξ) ∈ IIoct, (1.5)

where ̂u(s, s) is the right limit of ̂u(s, ·) at any s > 0.
Switching our perspective from (1.3) to (1.5), we are interested in the global existence, unique-

ness, and qualitative properties of a solution ̂u: the leading idea is to try to identify a plane curve2

potentially representing the free boundary, and then reconstruct from it the values of û in IIoct. 
It turns out that this strategy is successful (see Sections 3, 4 for detailed statements), the free 
boundary being identified by the graph of the function � in (1.6) below3; proving existence of a 
solution to (1.6) is the central part of the proof.

Denote by | · | the one-dimensional Lebesgue measure in R.

Theorem 1.1. Let u0 ∈ BVloc([0, +∞)) be nonnegative. The nonlocal equation

�(t) = u0(t) + |{ s ∈ [0, t] : �(t − s) > s }| ∀t ∈ [0,+∞), (1.6)

in the nonnegative unknown � ∈ BVloc([0, +∞)), has a solution, which is unique provided u0
is positive in a right neighborhood of the origin. In addition, � cannot have increasing jumps, 
unless u0 has, while it may have decreasing jumps. Moreover, the function

v(τ, ξ) := u0(ξ) + |{ s ∈ [0, τ ] : �(s) + s > ξ }| ∀(τ, ξ) ∈ IIoct (1.7)

is the global unique solution to (1.5) having the generalized graph G� of � as free boundary, it 
satisfies the mass conservation, and v(τ, ·) satisfies a unilateral Lipschitz condition, provided u0
does.

Theorem 1.1 essentially says that the construction of a solution of (1.5) is equivalent to solve 
the nonlocal equation (1.6) describing the free boundary: this is not immediate, and requires some 
recursive argument. As already said, equation (1.6) has a geometric meaning (see Remark 4.1
and Section 4.1) and has also various equivalent formulations (see the end of Section 4): one of 
them, see (4.21), is based on the generalized inverse of the vertical rearrangement of the function 
L�(t) := �(t) + t , and may be used for the explicit construction of � in specific examples.

The main difficulties in the proof of Theorem 1.1 are due to the fact that, at a point (τ , ξ), a 
characteristic line {ξ = ξ} passing through (τ , ξ), may intersect several (possibly infinitely many) 

2 Heuristically, the graph of u as a function of time, on the line {x = 0}.
3 How to guess the equation for � is obtained in formula (3.11).
4
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times both the subgraph and the epigraph of �, before ending on the vertical axis {τ = 0} where 
keeping the value of u0; this happens in correspondence of critical slopes of �, corresponding 
(roughly) to regions where L� becomes strictly decreasing and L� loses monotonicity. As already 
said, in correspondence of these critical values function � and the solution v exhibit interesting 
features.

It is worthwhile to remark that equation (1.3) admits a Lyapunov functional, which is sug-
gested by looking at the discrete Lyapunov functional known for the open discrete mancala [6], 
see (2.4) and Section 6.

It is immediate to devise a class of stationary solutions for the flow, i.e., u(x) = (
√

2m −
x)1[0,

√
2m] (Example 7.1), m ≥ 0 being the initial mass. In an interesting example (the Riemann 

problem corresponding to the initial datum u0 = 1[0,1), discussed in Section 8) it turns out that 
the Lyapunov functional4 is constant unless in proximity of a critical time, after which it is 
strictly decreasing for a while. The Riemann problem is a nice example that illustrates a rather 
complex solution starting from a very simple initial condition, and that shades light on the main 
phenomena behind equation (1.3), in particular the vertical rearrangement. As already explained, 
the main point is to construct the function �, and this can be done recursively, taking advantage 
of the fact that � must be polygonal,5 and constructing the sequences of slopes connecting pairs 
of local minima and local maxima. The explicit construction of �, though not in closed form, 
is given by recurrence, and is rather intricated, due to the unavoidable presence of (a countable 
number of) critical slopes, and therefore of a multivalued6 graph; the most involved case is when 
two vertical rearragements need to be performed in adjacent segments (see the first picture in 
Fig. 5). It is proven in Section 8 that the corresponding stationary solution is reached in an 
infinite time.

The content of the paper is the following. In Section 2, after briefly recalling the moves in 
the open mancala game, we describe the rescaling leading to (1.1). In Section 3 we consider 
the (t, x) formulation of the PDE, and its transformed version in (τ, ξ) variables, leading to the 
notion of integral solution (Definition 3.3). In Section 4 we introduce the equation solved by �, 
the graph of which will be the free boundary. Global existence and uniqueness of �, as well as 
some qualitative properties, are proven in Theorem 4.1. The geometric meaning of equation (1.6)
in terms of the affine transformation and the vertical rearrangement is explained in Remark 4.1
and Section 4.1. The last part of Section 4 is concerned with a more general class of initial data, 
in particular those that may vanish at zero. In Section 5 we prove the existence and uniqueness 
of an integral solution to (1.3), in particular the solvability of (1.7). In Section 6 we study the 
Lyapunov functional associated to (1.3). Section 7 contains some initial examples. Section 8 is 
essentially devoted to the explicit construction of � and the solution for the Riemann problem, 
which are rather involved. The construction of � is given in Theorem 8.1, on the basis of the 
algorithm described in (8.3), (8.6), and (8.7). How to directly recover, in a computable way, the 
integral solution from the knowledge of � is explained in Remark 8.3, see also Fig. 6. A movie 
of the solution is illustrated in Figs. 7, 8. A few final examples are described in Section 8.2.

We conclude this introduction by remarking that the rigorous asymptotic analysis of the dis-
crete model as h → 0+ is out of the scope of the present paper, and will be investigated elsewhere.

4 A Lipschitz function in time.
5 One can see that the flow starting from a polygonal initial condition (i.e., a piecewise affine possibly discontinuous 

function, see Definition 3.1) generates a piecewise affine solution, a useful fact for the explicit computation of solutions.
6 In this case there cannot be more than three values.
5
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2. Motivation: the discrete dynamical system and its rescaling

Let N be the nonnegative integers, and N∗ be the positive integers. Following [6], a config-
uration λ is a map λ : N∗ → N , and a mancala configuration is a configuration λ such that 
supp(λ) := { i ∈ N∗ : λi > 0 } is connected, supp(λ) = {1, 2, . . . , len(λ)}, with len(λ) ∈ N∗
called the length of the configuration. The mass of a mancala configuration λ is defined as 
|λ| := ∑+∞

i=1 λi = ∑len(λ)
i=1 λi . We denote with � the set of all mancala configurations, and with 

�m the set of all mancala configurations with mass m ≥ 0.
The open mancala game is a discrete dynamical system associated with a function M : � →

�; the action of M on a mancala configuration λ is defined by

M(λ)j :=
{

λj+1 + 1 if 1 ≤ j ≤ λ1,

λj+1 if j > λ1.
(2.1)

Conventionally we also assume M(000 · · · ) = 000 · · · .
For clarity, it is convenient to split M into two elementary “half-moves”: the sowing move S , 

which consists in taking all seeds in the leftmost hole (j = 1) and redistribute them between the 
next holes by putting one seed for each hole until the seeds are over,

S(λ)j :=

⎧⎪⎨⎪⎩
0 if j = 1,

λj + 1 if 2 ≤ j ≤ λ1 + 1,

λj if j > λ1 + 1,

and the left-shift move7 L, which shifts to the left all holes by one,

L(λ)j := λj+1, j ≥ 1.

The composite map L ◦ S maps mancala configurations into mancala configurations and indeed 
we have L ◦ S(λ) = M(λ) : �m → �m.

It is natural to introduce an integer parameter κ ≥ 0, standing for the discrete time; given a 
configuration λκ ∈ �m, the sowing half-move is⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ
κ+ 1

2
1 := 0

λ
κ+ 1

2
j := λκ

j + 1 if 2 ≤ j ≤ λκ
1 + 1,

λ
κ+ 1

2
j := λκ

j if j > λκ
1 + 1,

(2.2)

and the left-shift half-move is

λκ+1
j := λ

κ+ 1
2

j+1 .

The composition of the two half-moves gives therefore the move

7 This is done for convenience in order to obtain a reference system following the configuration, and corresponds to a 
right translation of the observer.
6
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{
λκ+1

j−1 = λκ
j + 1 if 2 ≤ j ≤ λκ

1 + 1,

λκ+1
j−1 = λκ

j if j > λκ
1 + 1,

i.e.,

λκ+1
j−1 = λκ

j + 1Iκ (λ)(j), where I κ(λ) := { j ∈N : 2 ≤ j ≤ λκ
1 + 1 }, (2.3)

with 1Iκ (λ)(j) = 1 if j ∈ I κ(λ) and 0 else.

Remark 2.1 (Conservation of mass). It is clear that mass is conserved:

m =
+∞∑
j=0

λκ
j ∀κ ≥ 0.

Remark 2.2 (A discrete Lyapunov functional). In the discrete setting a Lyapunov functional, 
mimicking a gravitational potential [6], can be defined as

L(λ) =
∑

(i,j)∈N∗×N∗
i≤j<i+λi

j. (2.4)

Now, we suitably rescale the discrete dynamical system (2.3).

2.1. Rescaling

From (2.3) it immediately follows

λκ+1
j − λκ

j = λκ+1
j − λk+1

j−1 + 1Iκ (λ)(j). (2.5)

Now we rescale j , κ and λ. If 0 < h � 1, we imagine a grid Gh in time-space [0, +∞) ×
[0, +∞) of the form { (kh, ih) : k, h ∈ N∗ }. Next we substitute8 in (2.5) kh in place of κ , ih in 
place of j , and we write λ = u/h. The constraint j ∈ I κ(λ) is transformed into

ih ∈ {nh ∈ Nh : 2h ≤ nh ≤ (λκ
1 + 1)h } = {nh ∈ Nh : 2h ≤ nh ≤ ukh

h + h }.

We get from (2.5)

u
(k+1)h
ih − ukh

ih

h
= u

(k+1)h
ih − u

(k+1)h
(i−1)h

h
+ 1{

2h≤ · ≤ukh
h +h

}(ih) (2.6)

for i ≥ 1, k ≥ 0. We couple this rescaled dynamical system with the initial condition

u0
ih = u0(ih), i ≥ 1. (2.7)

8 Notice the hyperbolic rescaling: time and space are rescaled the same way.
7
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Our aim is to study a continuous version of (2.6), (2.7). If we interpret the quantities ukh
ih as the 

values that a map (t, x) ∈ [0, +∞) × [0, +∞) 
→ u(t, x) takes on the points of the grid Gh (i.e. 
ukh

ih = u(kh, ih)) then the equation (2.6) suggests that u formally satisfies the PDE in (1.3).

Remark 2.3. We have

m = 1

h

+∞∑
i=1

ukh
ih ,

and the series is a finite sum.

3. The continuous problem: a singular transport equation

1A stands for the characteristic function of the set A ⊂Rk , k = 1, 2, i.e., 1A(x) = 0 if x ∈ A

and 1A(x) = 0 if x ∈Rk \ A. | · | denotes the Lebesgue measure in R. All functions we consider 
are nonnegative and Lebesgue measurable.

We denote by BVloc([0, +∞)) the class of all functions v of finite pointwise variation in 
[0, a], for any a > 0. We recall [1] that v is bounded in [0, a], there exists finite limx→0+ v(x) =:
v(0), and v admits finite right and left limits at any x ∈ (0, +∞). We also let [4]

subgr+(v) := { (t, x) ∈ [0,+∞) × [0,+∞) : v(t) > x } (3.1)

be the subgraph of v in [0, +∞) × [0, +∞); its reduced boundary in (0, +∞) × (0, +∞) is 
given by the generalized graph of v, i.e., the graph of v with the addition of vertical segments 
joining the left and the right limits at the jump points.

Definition 3.1 (Polygonal function). We say that v ∈ BVloc([0, +∞)) is polygonal if its gener-
alized graph consists, in any compact set K ⊂ [0, +∞), of a finite number of segments (vertical 
segments are allowed9).

Recall that if v : [0, +∞) → [0, +∞), then the function λ ∈ [0, +∞) 
→ |{ x ∈ [0, +∞) :
v(x) > λ }| is nonincreasing and right-continuous.

We start the study of the PDE in (1.3); from now on, we always assume:

u0 ∈ BVloc([0,+∞)), u0 right continuous and nonnegative. (3.2)

3.1. (τ, ξ)-formulation

Duly motivated by (2.6) we consider problem (1.3), for which we need a rigorous notion of 
solution. Let be given a nonnegative function v defined everywhere on Iquad, and suppose that 
for any t > 0 there exists limx→0+ v(t, x) =: v(t, 0) ∈ [0, +∞).

9 v can be discontinuous, with a finite number of jump points in K .
8
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Definition 3.2 (Active and tail regions; free boundary). We call

A(v) := { (t, x) : t > 0, 0 < x < v(t,0) }, T (v) := { (t, x) : t > 0, x > v(t,0) },

the active region10 and the tail region (of v), respectively. We also define the free boundary 	(v)

as

	(v) := { (t, x) ∈ Iquad : x = v(t,0) }. (3.3)

The problem that we want to study reads formally as{
ut (t, x) = ux(t, x) + 1(0,u(t,0))(x) if (t, x) ∈ (0,+∞) × (0,+∞),

u(0, x) = u0(x) if x ∈ [0,+∞).
(3.4)

Observe that

1(0,u(t,0))(x) = 1(x,+∞)(u(t,0)) ∀x > 0

and that the PDE reads as

ut (t, x) =
{

ux(t, x) if x > u(t,0), i.e., (t, x) ∈ T (u),

ux(t, x) + 1 if x < u(t,0), i.e., (t, x) ∈ A(u).

A natural sense in which we can interpret (3.4) is obtained using transformation � in (1.4). 
Given a function v : Iquad → [0, +∞), define

v̂(τ, ξ) := v(�−1(τ, ξ)) = v(t, x) ∀(τ, ξ) ∈ IIoct. (3.5)

Then formally the PDE in (3.4) transforms into{
ûτ (τ, ξ) = 1(0,̂u(τ,τ ))(ξ − τ) = 1(τ,̂u(τ,τ )+τ)(ξ) if (τ, ξ) ∈ IIoct,

û(0, ξ) = u0(ξ) if ξ ∈ [0,+∞).
(3.6)

Active (resp. tail) region A(u) (resp. T (u)) transforms into

A(̂u) = { (τ, ξ) : τ > 0, τ < ξ < û(τ, τ ) + τ }, T (̂u) = { (τ, ξ) : τ > 0, ξ > û(τ, τ ) + τ },

and the set 	(u) in (3.3) transforms into

	(̂u) = { (τ, ξ) : ξ > τ, ξ = û(τ, τ ) + τ }. (3.7)

We are now in a position to define what we mean by a solution of (3.4).

10 The active region coincides with subgraph+(v(·, 0)).
9
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Definition 3.3 (Integral solution). We say that a locally bounded function û : IIoct → [0, +∞)

defined everywhere is an integral solution to (1.3) if the following conditions hold:

(i) for any τ > 0

∃ lim
ξ→τ+ û(τ, ξ) =: û(τ, τ ) ∈ [0,+∞);

(ii) for any (τ, ξ) ∈ IIoct,

û(τ, ξ) = u0(ξ) +
τ∫

0

1(s,̂u(s,s)+s)(ξ) ds. (3.8)

Some comments are in order.

(a) if û is an integral solution then, for any ξ > 0, the function τ ∈ (0, ξ) 
→ û(τ, ξ) is nonde-
creasing and one-Lipschitz.

(b) For any (τ, ξ) ∈ IIoct we have11

τ∫
0

1(s,̂u(s,s)+s)(ξ) ds =
1∫

0

|{ s ∈ [0, τ ] : 1(s,̂u(s,s)+s)(ξ) > λ }|dλ

=
1∫

0

|{ s ∈ [0, τ ] : s < ξ < û(s, s) + s }|dλ = |{ s ∈ [0, τ ] : s < ξ < û(s, s) + s }|

=|{ s ∈ [0, τ ] : û(s, s) + s > ξ }|,

(3.9)

so that (3.8) is equivalent to

û(τ, ξ) = u0(ξ) + |{ s ∈ [0, τ ] : û(s, s) + s > ξ }|. (3.10)

In particular, since u0 is right-continuous, passing to the limit as ξ → τ+ and using (i),

û(τ, τ ) = u0(τ ) + |{ s ∈ [0, τ ] : û(s, s) + s > τ }| (3.11)

for all τ ∈ (0, +∞).

We conclude this section with a notation: given t > 0, we let ht = { (t, s) : s ≥ 0, s = ht (t) }
be the half-line pointing up-left at 45o and passing through (t, 0), defined by ht(t) = t − t .

11 In the first equality of (3.9) we use that, if f : [0, +∞) → [0, +∞) is measurable and I ⊆ [0, +∞), then 
∫
I f ds =∫ |I ∩ {f > λ}| dλ.
(0,+∞)

10
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4. Solving the equation for the free boundary

In this section we solve an auxiliary problem (see Theorem 4.1) which, in view of the results 
in Section 5, is essentially equivalent to find an integral solution of (1.3): the idea is to look for an 
expression of what, a posteriori, will be the curve 	(̂u) and then to reconstruct ̂u itself (and hence 
u) by the method of characteristics, distinguishing the active and the tail regions; here a difficulty 
arises since characteristic lines may pass from the active region to the tail region several times. 
Recall our assumption (3.2) on u0, and keep in mind (3.11).

Definition 4.1 (The function �). We say that the graph of a function � = �[u0] : [0, +∞) →
[0, +∞) represents the free boundary of problem (1.3) if

�(t) = u0(t) + |{ s ∈ [0, t] : �(t − s) > s }| ∀t ∈ [0,+∞). (4.1)

In what follows, we shall frequently use the obvious equality

|{ s ∈ [0, t] : �(t − s) > s }| = |{ s ∈ [0, t] : �(s) + s > t }|. (4.2)

Notice that, since u0 is right-continuous, also � is right-continuous; moreover

�(0) = u0(0).

Remark 4.1 (Geometric meaning). Formula (4.1) has a geometric meaning: recalling the no-
tation in the end of Section 3, consider the half-line ht = {(t − s, s) : s > 0}. Next, take the 
intersection It of ht with subgraph+(�) = {(t, s) ∈ (0, +∞) × (0, +∞) : �(t) > s}, so that

It = { (t, s) : s ∈ [0, t], �(t − s) > s }.
Denote by π2 : [0, +∞) × [0, +∞) → {0} × [0, +∞) the orthogonal projection on the vertical 
s-axis. Then

�(t) = u0(t) + |π2(It )|, t ≥ 0. (4.3)

In particular, if u0 is polygonal, then � is polygonal.12

Proving that (4.1) has a solution is nontrivial; in order to do that we start to show that if (4.1)
has a solution and u0 has a suitable behavior close to the origin, then � cannot go to zero at any 
point of [0, +∞).

Proposition 4.1 (Lower bound). Suppose that � solves (4.1) and furthermore

∃α > 0 : u0(t) ≥ α ∀t ∈ [0, α). (4.4)

Then

�(t) ≥ α ∀t ∈ [0,+∞). (4.5)

12 Recall that jumps are not excluded.
11
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Assumption (4.4) says that we can pick a square Q = (0, α) ×(0, α) contained in subgraph+(�),
and (4.5) says that we can slide Q horizontally remaining inside subgraph+(�), and this is crucial 
in what follows; dropping this assumption is discussed in Theorem 4.2 and in Section 4.4.

Proof. Suppose by contradiction that (4.5) is false, and define t0 := inf{ t ∈ [0, +∞) : �(t) < α }. 
From (4.4) and (4.1) it follows

t0 ≥ α. (4.6)

Fix now ε ∈ (0, α), that will be selected later (see (4.9)). Pick t ∈ (t0, t0 +ε), and write t = t0 +η, 
with η ∈ (0, ε). In particular, η < α. Set

E := { s ∈ [0, η) : �(t − s) > s }, F := { s ∈ [η,α) : �(t − s) > s }.

From (4.1) and recalling that u0 is nonnegative it follows

�(t) ≥ |{ s ∈ [0, t] : �(t − s) > s }| = |E| + |{ s ∈ [η, t] : �(t − s) > s }| ≥ |E| + |F |, (4.7)

where in the last inequality we have used (4.6), so that t > t0 ≥ α.

Claim 1: We have |F | = α − η.
Indeed, if s ∈ F , in particular s ≥ η, and so t − s = t0 + η − s ≤ t0. Hence, recalling the 

definition of t0, we have �(t − s) ≥ α. But for s ∈ F we have s < α, and so �(t − s) > s, which 
implies |F | = α − η.

From (4.7), claim 1 and η ∈ (0, ε) it follows

�(t) ≥ α − ε ∀t ∈ (t0, t0 + ε). (4.8)

Claim 2: If ε < α/2 then |E| = η.
We start to observe that for any s ∈ E we have t0 ≤ t − s < t0 + ε. Indeed, t − s = t0 +η− s <

t0 + ε since η − s < ε − s ≤ ε; on the other hand, t − s = t0 + η − s > t0 since η − s > 0, from 
the definition of E. Therefore we are allowed to replace t with t − s in (4.8), and we get

�(t − s) ≥ α − ε ∀s ∈ E.

Due to our choice of ε, we have α − ε > α/2, and α/2 > s, since α/2 > ε > η. Hence all 
s ∈ [0, η) are points of E, and the claim follows.

From (4.7) and claims 1 and 2 we deduce, provided

ε ∈ (0, α/2), (4.9)

that

�(t) ≥ η + α − η = α ∀t ∈ (t0, t0 + ε),

which contradicts the definition of t0. �

12



G. Bellettini, A. Betti and M. Paolini Journal of Differential Equations 396 (2024) 1–43
Lemma 4.1. Under assumption (4.4), � is a solution of (4.1) if and only if

�(t) =
{

u0(t) + t ∀t ∈ [0, α),

u0(t) + α + |{ s ∈ [α, t] : �(t − s) > s }| ∀t ∈ [α,+∞).
(4.10)

Proof. Suppose that � satisfies (4.1). According to Proposition 4.1, � must satisfy (4.5). Hence, 
for any t ∈ [α, +∞),

�(t) = u0(t) + |{ s ∈ [0, α) : �(t − s) > s }| + |{ s ∈ [α, t] : �(t − s) > s }|
= u0(t) + α + |{ s ∈ [α, t] : �(t − s) > s }|

since, from (4.1), if s ∈ [0, α), then �(t − s) ≥ α > s. The case t ∈ [0, α) is a direct consequence 
of (4.5) and (4.1).

The proof of the converse implication is similar. �
Theorem 4.1 (Global existence and uniqueness of �). Let u0 be as in (3.2), and suppose that 
(4.4) holds. Then (4.1) admits a unique solution � ∈ BVloc([0, +∞)). Furthermore � satisfies 
(4.5), �(t) ≤ ‖u0‖∞ + t for all t ∈ [0, +∞), and

�(t + τ) − �(t) ≤ u0(t + τ) − u0(t) + τ, t > 0, τ ≥ 0. (4.11)

In particular, suppose spt(u0) ⊂ [0, a] and t > a; then � cannot have increasing jumps, as well 
as increasing Cantor parts, in (a, +∞).

Proof. We construct � as follows: first we set

�(t) := u0(t) + t ∀t ∈ [0, α]. (4.12)

Next, keeping in mind (4.10), we define

�(t) := u0(t) + α + |{ s ∈ [α, t] : �(t − s) > s }| ∀t ∈ [α,2α]. (4.13)

Note that � is well-defined in the interval [α, 2α], since if t ∈ [α, 2α] and s ∈ [α, t], then t − s ∈
[0, α], and we can use (4.12).

We now repeat the argument inductively for t ∈ [kα, (k + 1)α] for any integer k ≥ 2; for 
instance, if k = 2, for any t ∈ [2α, 3α] we set

�(t) :=u0(t) + α + |{ s ∈ [α, t] : �(t − s) > s }|
=u0(t) + α + |{ s ∈ [α,2α] : �(t − s) > s}|

+ |{ s ∈ (2α, t] : �(t − s) > s }|,
(4.14)

where we notice that if s ∈ [α, 2α] then t − s ∈ [0, 2α], so that

|{ s ∈ [α,2α] : �(t − s) > s }| =|{ s ∈ [α,2α] : t − s ∈ [0, α], �(t − s) > s }|
+ |{ s ∈ [α,2α] : t − s ∈ (α,2α], �(t − s) > s }|,
13
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and if s ∈ [2α, t] then t − s ∈ [0, α]; thus (4.14) is well-defined by (4.12) and (4.13).13

In this way we construct a globally defined function � : [0, +∞) → (0, +∞) satisfying (4.10)
and (4.5). Hence the existence of a solution to (4.1) follows from Lemma 4.1. To prove that � is 
unique, it is sufficient to show that it is unique in [0, α); since � ≥ u0 ≥ α in [0, α], it follows 
from (4.13) that �(t) = u0(t) + t for any t ∈ [0, α), as desired.

From (4.12) and the assumption (3.2) it follows � ∈ BV([0, α]); then the BVloc-regularity of 
� follows observing that the term |{ s ∈ [0, t] : �(t − s) > s }| in (4.1) can be written as difference 
of two nondecreasing functions. More specifically, using also (4.2),

|{ s ∈ [0, t] : �(t − s) > s }| = t − |{ s ∈ [0, t] : �(t − s) ≤ s }|
=t − |{ τ ∈ [0, t] : �(τ) + τ ≤ t }|,

and the last term on the right-hand side is nondecreasing in t . Clearly, the bound �(t) ≤ ‖u0‖∞+ t

for all t ∈ [0, +∞), follows from (4.1).
It remains to prove that � satisfies the one-sided Lipschitz condition (4.11). Let t > 0 and 

τ > 0; since

{ t ∈ [0, t] : ht+τ (t) ≤ �(t) } ⊆ { t ∈ [0, t] : ht (t) < �(t) },

we have

|{ t ∈ [0, t] : ht+τ (t) ≤ �(t) } ∪ { t ∈ (t, t + τ ] : ht+τ (t) ≤ �(t) }|
=|{ t ∈ [0, t] : ht+τ (t) ≤ �(t) }| + |{ t ∈ (t, t + τ ] : ht+τ (t) ≤ �(t) }|
≤|{ t ∈ [0, t] : ht (t) < �(t) }| + |{ t ∈ (t, t + τ ] : ht+τ (t) ≤ �(t) }|
≤|{ t ∈ [0, t] : ht (t) < �(t) }| + τ.

Whence (4.11) follows from Remark 4.1, since the Lebesgue measures of the ortoghonal pro-
jection of It+τ and It on the t-axis, are the same as the Lebesgue measure of the corresponding 
projections on the s-axis. �
13 For any t ∈ [kα, (k + 1)α] we set

�(t) :=u0(t) + α + |{ s ∈ [α, t] : �(t − s) > s }|

=u0(t) + α +
k−1∑
j=1

|{ s ∈ [jα, (j + 1)α] : �(t − s) > s}|

+ |{ s ∈ [kα, t] : �(t − s) > s }|,

(4.15)

where, if s ∈ [jα, (j + 1)α] then t − s ∈ [(k − 1 − j)α, (k + 1 − j)α], so that

|{ s ∈ [jα, (j + 1)α] : �(t − s) > s }| =|{ s ∈ [jα, (j + 1)α] : t − s ∈ [(k − 1 − j)α, (k − j)α], �(t − s) > s }|
+ |{ s ∈ [jα, (j + 1)α] : t − s ∈ ((k − j)α, (k − 1 + j)α], �(t − s) > s }|,

and if s ∈ [2kα, t] then t − s ∈ [0, α]; thus (4.14) is well-defined by recursion.
14



G. Bellettini, A. Betti and M. Paolini Journal of Differential Equations 396 (2024) 1–43
Remark 4.2 (Shorter steps). Suppose (4.4), and take β ∈ (0, α); in particular �(t) ≥ β for any t ∈
[0, β]. Then the constructive proof in Theorem 4.1 (see (4.13), (4.14), (4.15)) obtained replacing 
α with β leads to the same �.

The following useful result has a straightforward proof.

Lemma 4.2 (Monotonicity). Suppose that u01, u02 are two nonnegative functions in
BVloc([0, +∞)), both satisfying (4.4). Let �1, �2 be the corresponding solutions given by Theo-
rem 4.1. Then

u01 ≤ u02 =⇒ �1 ≤ �2.

Proof. Let α > 0 be such that (4.4) holds both for u01 and u02. From our assumption and (4.10)
it immediately follows that �1 ≤ �2 in [0, α]. Then the same inequality holds for t ∈ [α, 2α], as a 
consequence of the inclusion { s ∈ [α, t] : �1(t − s) > s } ⊆ { s ∈ [α, t] : �2(t − s) > s } and (4.10). 
Then the assertion follows, recalling the recurrence proof of Theorem 4.1. �

We conclude this section with a crucial definition which, as we shall see, is related to the 
vertical rearrangement.

Definition 4.2 (Critical segments and critical times). Any segment in the graph of � having slope 
in [−∞, −1) is called a critical segment, and the corresponding slope is called a critical slope. 
The t-coordinate of the left extremum of a critical segment is called a critical time.14

Note carefully that any critical segment in the graph of � forces the existence of a range of 
t > 0 for which ht ∩ subgraph+(�) is not connected.

4.1. Transformation R and rearrangement

In this short section we deepen the geometric meaning of formula (4.3); this shades light on 
the meaning of �, and is useful to construct examples (see Sections 7 and 8).

Let us introduce the affine transformation

R : Iquad → Iquad, R(t, s) := (t + s, s). (4.16)

It moves a point to the right (same s, larger t) of an amount equal to its vertical s-component.15

Then there is a peculiar relation between subgraph+(�) (which is a locally finite perimeter set 
[4]) and its R-transformed: the former is a kind of rearrangement of the latter.

Specifically, consider the vertical rearrangement F� of a locally finite perimeter set F ⊂
[0, +∞) × [0, +∞), defined as follows: for any t ∈ [0, +∞), if Ft := {t = t} ∩ F , and F�

t
:=

{t} × [0, |Ft |], then

F� :=
⋃
t≥0

F
�
t ,

14 If the segment has slope −∞, its projection on the t -axis is one point, still called a critical time.
15 In particular, it transforms a square ((k − 1)α, kα) × (0, α) into the square (kα, (k + 1)α) × (0, α), k ∈N .
15
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which is still [5, Theorem 14.4] a locally finite perimeter subset of [0, +∞) × [0, +∞), hav-
ing the same Lebesgue measure as F . Suppose for simplicity that u0 has compact support, say 
spt(u0) ⊂ [0, c]. Then the validity of (4.3) for all t ∈ [c, +∞) can be equivalently expressed as

subgraph+(�) ∩
(
[c,+∞) × [0,+∞)

)
= R(subgraph+(�))� ∩

(
[c,+∞) × [0,+∞)

)
. (4.17)

Then it is immediately seen from (4.17) that, provided kα ≥ c, we have

sup
t∈[(k+1)α,(k+2)α]

�(t) ≤ sup
t∈[kα,(k+1)α]

�(t)

inf
t∈[(k+1)α,(k+2)α]�(t) ≥ inf

t∈[kα,(k+1)α]�(t)
(4.18)

so that the oscillation of � in [kα, (k + 1)α] is nonincreasing in k.
It is interesting to observe that the strict inequalities hold in (4.18) under certain conditions 

on u0: for instance, suppose that u0, beside having support contained in [0, c], is polygonal. If 
there is a critical segment in the generalized graph of � whose projection on the horizontal t-
axis is contained in [kα, (k + 1)α], then the strict inequalities hold in (4.18). Finally, segments 
with slope −1 are transformed via R to vertical segments, and a critical segment, together with 
its left-adjacent, are transformed into a polygonal which is not a graph with respect to t . This 
construction will be employed in the examples, in particular the Riemann problem considered in 
Section 8.

4.2. The functions L� and S�

It is convenient to introduce the following functions, that have been implicitly used in the end 
of the proof of Theorem 4.1.

Definition 4.3 (L� and S�). Let u0 and � = �[u0] be as in Definition 4.1. We set

L�(t) := �(t) + t ∀t ≥ 0

and

S�(s) :=
{

0 if s ∈ [0, �(0)],
|{σ ∈ [0, s] : L�(σ ) ≤ s }| if s > �(0).

(4.19)

Remark 4.3. The function S� is nondecreasing in [0, +∞), and for any t > 0

t − S�(t) = |{ s ∈ [0, t] : �(s) > t − s }| = |{ s ∈ [0, t] : �(t − s) > s }|. (4.20)

Hence formula (4.1) is equivalent to

�(t) = u0(t) + t − S�(t) ∀t ∈ [0,+∞). (4.21)

Before concluding this section, we summarize some of the obtained results.
16



G. Bellettini, A. Betti and M. Paolini Journal of Differential Equations 396 (2024) 1–43
Remark 4.4. The function � can be described in various equivalent ways:

(i) algebraically, using equation (4.1) or, equivalently, equation (4.10) or also equation (4.21);
(ii) geometrically, computing the Lebesgue measure of the projection on one of the coordinate 

axes of the intersection of the up-left half-lines at 45o with subgraph+(�) (see formula (4.3)), 
or using the transformation R and the vertical rearrangement, as explained in Section 4.1.

4.3. Examples

It is worth showing some explicit computations of �; more involved and interesting examples 
will be illustrated in Sections 7 and 8. The next example is particularly simple, and concerns an 
initial condition not with compact support; curiously enough, this example involves the triangular 
numbers

Tk :=
k∑

i=0

k = k(k + 1)

2
.

Example 4.1 (Constant initial condition, I). Let

u0 = 1[0,+∞),

which has infinite mass. From (4.12) and (4.13) one checks that � : [0, +∞) → [1, +∞) is the 
Lipschitz piecewise affine function that interpolates the points (Tk, k + 1), so that

�(t) = t

k + 1
+ k

2
+ 1, t ∈ [Tk,Tk+1], k ∈N, (4.22)

see Fig. 1. Hence L� : [0, +∞) → [1, +∞) is also Lipschitz piecewise affine, L�(Tk) = Tk+1, 
and reads as

L�(t) = k + 2

k + 1
(t − Tk) + Tk+1, t ∈ [Tk,Tk+1], k ∈N. (4.23)

Functions � and L� are strictly increasing and surjective.
Equivalently, � can be constructed recursively using S� as follows. Since α = 1, from (4.12)

we obtain �(t) = 1 + t (and L�(t) = 1 + 2t) for t ∈ [0, 1]; from (4.19) we have S� = 0 in [0, 1], 
and S�(s) = (s − 1)/2 for any s ∈ [1, 3] = L�([0, 1]). Since we know the function S� in the 
interval [1, 3] we can find, using (4.21), L� in [1, 3]. We have �(t) = (t + 3)/2 and L�(t) =
3(t + 1)/2 for t ∈ [1, 3] and so on. In general, S� : [0, +∞) → [0, +∞),

S�(s) = k + 1

k + 2
(s − Tk+1) + Tk, s ∈ [Tk+1, Tk+2], k ≥ 0,

and is the inverse of L� and interpolates the values S�(Tk) = Tk−1.

The next interesting example will be completely solved in Section 8, and it is useful in order 
to understand how to construct �.
17
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Fig. 1. Graph of � for Example 4.1. Time t is horizontal.

Example 4.2 (Riemann problem in [0, 11 + 3/2]). Let

u0 = 1[0,1). (4.24)

Let us calculate � = �[u0], which we know to be polygonal, since u0 is polygonal (Remark 4.1). 
We shall construct � in the time interval [0, 11 + 3/2]. Taking α = 1, Lemma 4.1 tells us that

�(t) = u0(t) + t = 1 + t, t ∈ (0,1). (4.25)

It is convenient to add the vertical segment {0} ×[0, 1] = {0} ×[0, u0(0)] in the generalized graph 
of �. In [0, 1) × [0, +∞) the set subgraph+(�) is enclosed between the segment {(t, 1 + t) : t ∈
[0, 1)]} and the horizontal axis and, by Proposition 4.1,

subgraph+(�) ⊇ (0,+∞) × (0,1). (4.26)

Hence, for t ∈ [1, 2], the intersection It = ht ∩subgraph+(�) of the half-line ht with subgraph+(�)

is the segment joining (t, 0) with (t/2 − 1/2, t/2 + 1/2), and so (Remark 4.1)

�(t) = t

2
+ 1

2
, ∀t ∈ [1,2]. (4.27)

Therefore the left limit of � at 1 is 2 > �(1) = 1, and � has a decreasing jump at t = 1; it is 
convenient to draw the generalized graph of � in [0, 2], in particular the vertical segment {1} ×
[1, 2], see Fig. 4.16

Now, using (4.25), (4.27) and (4.26), we see that for t ∈ [2, 3] the intersection It = ht ∩
subgraph+(�) is not connected, and splits into two segments: one joining (t, 0) with (t/2 −
1/2, t/2 + 1/2), and another one joining (1, t − 1) with ((2/3)t − 1/3, t/3 + 1/3). Hence

�(t) = t

2
+ 1

2
+ t

3
+ 1

3
− (t − 1) = −t + 11

6
∀t ∈ [2,3].

16 We have furthermore S� = 0 on [0, 1], S�(x) = (x − 1)/2 for x ∈ [1, 2), S�(x) = (x − 1)/2 + 2x/3 − 4/3 = 5x/6 −
11/6 for x ∈ [2, 7/2].
18
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For times t ∈ [3, 11) the intersection It turns out to be connected, and � can be found by iter-
atively moving on the right (recall the affine transformation in Section 4.1) the point (2, 3/2)

by 3/2 (its height), and the point (3, 4/3) by 4/3 (its height) till the transformed points have 
the same first coordinate, i.e., when 2 + (3/2)n = 3 + (4/3)n for n ∈ N , giving n = 6 and so 
t = 2 + (3/2)6 = 11. The graph of � in [3, 11) is plotted in Fig. 4.

Time t = 11 is similar to t = 1, when � has a decreasing jump discontinuity, and time 37/3 =
11 +4/3 is critical. For t ∈ (11, 37/3) we find, by a direct computation similar to the one made in 
[2, 3], �(t) = (1 + t)/9, while for t ∈ (37/3, 25/2 = 11 + 3/2) the intersection It consists of two 
segments: a direct computation gives �(t) = (1 + t)/9 − (t − 11) + (1 + t)/10 = −(71/90)t +
1009/90. Now since the solution of 37/3 + (40/27)n = 25/2 + (27/20)n is n = 1 = �90/71�, 
we have t = 1009/71.

The complete recursive construction of � is complicated, and will be done in Section 8.

4.4. Initial conditions vanishing at the origin

If we drop assumption (4.4) we have the following result.

Proposition 4.2. Let u0 be bounded and satisfying (3.2). Then there exists a function � satisfying 
(4.11) and

�(t) = u0(t) + |s ∈ [0, t] : �(t − s) ≥ s| ∀t ∈ [0,+∞). (4.28)

Proof. For any δ > 0 let �δ be the unique solution of (4.1) given by Theorem 4.1, with u0 + δ

in place of u0. Recall from Lemma 4.2 that, if 0 < δ1 ≤ δ2, then �δ1 ≤ �δ2 . Fix a decreasing 
sequence (δn) ⊂ (0, +∞) converging to zero; by monotonicity and since each �δn is positive,

∃ lim
n→+∞�δn(t) =: �(t) ∈ [0,+∞) ∀t ∈ [0,+∞).

We know from Theorem 4.1 that

�δn(t) = u0(t) + δn + |{s ∈ [0, t] : �δn(t − s) > s}| ∀t ∈ [0,+∞),∀n ∈N, (4.29)

so it is sufficient to prove that

lim
n→+∞|Et

n| = |Et | ∀t ∈ [0,+∞), (4.30)

where

Et
n := {s ∈ [0, t] : �δn(t − s) > s} ⊇ Et := {s ∈ [0, t] : �(t − s) ≥ s}.

But Et = ∩n∈NEt
n, and so (4.28) follows passing to the limit in (4.29) as n → +∞. Also, (4.11)

follows passing to the limit, as n → +∞, in equation (4.11) written with �δn in place of � and 
u0 + δn in place of u0. �

The next result in particular ensures that if u0 is zero on a right interval of t = 0 and then 
becomes strictly positive, and if � exists, then also � must vanish in that interval; this allows to 
use a restarting procedure for computing �, via Theorem 4.1.
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Proposition 4.3. Let κ > 0, a > 0, and let γ be the positive root of γ 2 + κγ − κ = 0. If

u0(t) ≤ κt ∀t ∈ [0, a], (4.31)

then a solution to (4.1) satisfies

�(t) ≤ κt + γ t ∀t ∈ [0, a]. (4.32)

Conversely, if

u0(t) ≥ κt ∀t ∈ [0, a], (4.33)

then

�(t) ≥ κt + γ t ∀t ∈ [0, a]. (4.34)

Proof. Suppose (4.31). From (4.1) it follows �(t) ≤ κt + t for any t ∈ [0, a]. Hence

{s ∈ [0, t] : �(t − s) > s} ⊆ {s ∈ [0, t] : s < κ(t − s) + t − s} ∀t ∈ [0, a].

The inequality s < κ(t − s) + t − s implies s < κ+1
κ+2 t =: γ1t , so from (4.1) we have the improved 

estimate

�(t) ≤ κt + γ1t ∀t ∈ [0, a].

We now iterate the argument, and obtain that

�(t) ≤ κt + γnt ∀t ∈ [0, a], ∀n ∈N∗,

with

γn := κ + γn−1

1 + κ + γn−1
, n ≥ 2.

The decreasing sequence (γn) converges to the positive solution γ = −κ+
√

κ2+4κ
2 of the equation 

γ = κ+γ
1+κ+γ

or equivalently γ 2 + κγ − κ = 0, and (4.32) follows.
Conversely, suppose (4.33). Then, from (4.1) it follows �(t) ≥ κt for any t ∈ [0, a]. Hence

{s ∈ [0, t] : �(t − s) > s} ⊇ {s ∈ [0, t] : s < κ(t − s)}.

The inequality s < κ(t − s) implies s < κ
κ+1 t =: α1t , so that from (4.1) we have the improved 

estimate

�(t) > κt + α1t ∀t ∈ [0, a].

We now iterate the argument, and obtain that
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�(t) > κt + αnt ∀t ∈ [0, a],∀n ∈N∗,

with

αn := κ + αn−1

1 + κ + αn−1
, n ≥ 2.

The increasing sequence (αn) converges to γ , and (4.34) follows. �
5. Construction of a solution

In this section we prove existence and uniqueness of an integral solution (Definition 3.3). The 
next result shows that the function � studied in Section 4 captures the relevant information to 
solve (1.3).

Theorem 5.1 (Existence and uniqueness of an integral solution). Let u0 satisfy (3.2) and (4.4). 
Let � = �[u0] : [0, +∞) → [0, +∞) be the solution to (4.1). Then the function v : IIoct →
[0, +∞) defined as

v(τ, ξ) := u0(ξ) + |{s ∈ [0, τ ] : �(s) + s > ξ}| ∀(τ, ξ) ∈ IIoct, (5.1)

is the unique integral solution of (1.3), and

v(τ, τ ) = �(τ) ∀τ ∈ [0,+∞). (5.2)

Moreover:

(i) for any ξ ∈ [0, +∞) the function v(·, ξ) is one-Lipschitz;
(ii) v(τ, ·) ∈ BVloc([τ, +∞)) for any τ > 0;
(iii) if u0i , i = 1, 2, satisfies (3.2) and (4.4), and if vi stands for the expression on the right-hand 

side of (5.1) with u0 replaced by u0i , then

u01 ≤ u02 ⇒ v1 ≤ v2; (5.3)

(iv) if there exists C > 0 such that for all ξ ∈ [0, +∞)

u0(ξ + h) − u0(ξ)

h
≤ C, h > 0, (5.4)

then for all (τ, ξ), (τ, ξ + h) ∈ IIoct,

v(τ, ξ + h) − v(τ, ξ) ≤ C, h > 0; (5.5)

h
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(v) if u0 ∈ L1((0, +∞)) is bounded then v(τ, ·) ∈ L1((τ, +∞)) and v satisfies the conservation 
of mass17

+∞∫
τ

v(τ, ξ)dξ =
+∞∫
0

u0(ξ) dξ ∀τ ∈ [0,+∞). (5.6)

A comment on the expression of v in (5.1) is in order. Fix ξ > 0; as usual in linear transport 
equations, we look at the characteristic line {ξ = ξ}, and for a solution we should take the value 
u0(ξ) for (τ, ξ) in the tail region, and u0(ξ) +τ for (τ, ξ) in the active region; if the (generalized) 
graph GL�

of L� = id + � is a graph with respect to the vertical ξ -axis, v(τ, ξ) = u0(ξ) in the 
tail region, while the second addendum on the right-hand side of (5.1) activates when (τ, ξ) is in 
the active region. However, in general GL�

needs not be a graph with respect to the ξ -axis (see 
for instance Fig. 4); in case that a characteristic line intersects GL�

(once or) more than once, we 
have to add to u0(ξ), both in the tail region and in the active region, the Lebesgue measure of the 
intersection of {ξ = ξ} with the subgraph of L�, i.e., the time spent by the characteristic line in 
the active region.

Proof. Nonnegativity of v is immediate, since u0 is nonnegative.
(i) v is one-Lipschitz in τ , since clearly, for any ξ ≥ 0 and any h ∈R with ξ + h ≥ 0,

|v(τ + h, ξ) − v(τ, ξ)| =∣∣|{s ∈ [0, τ + h] : �(s) + s > ξ}|
− |{s ∈ [0, τ ] : �(s) + s > ξ}|∣∣ ≤ |h|.

(ii) v(τ, ·) ∈ BVloc([τ, +∞)), since u0 ∈ BVloc([0, +∞)) and the second addendum on the right-
hand side of (5.1) is nonincreasing (and right-continuous) if considered as a function of ξ .

Let τ > 0; passing to the limit as ξ → τ+ in (5.1) and using the right-continuity of the right-
hand side, gives

lim
ξ→τ+ v(τ, ξ) = v(τ, τ ) = u0(τ ) + |{s ∈ [0, τ ] : �(s) + s > τ }| = �(τ),

where the last equality follows from (4.1), and (5.2) follows.
From (5.1) and (5.2) it follows

v(τ, ξ) = u0(ξ) + |{s ∈ [0, τ ] : v(s, s) + s > ξ}|,

i.e., we have that (3.10) holds, which is equivalent to (3.8).
Concerning uniqueness, suppose that w is another integral solution of (1.3); from (3.10) it 

follows

w(τ, τ ) = u0(τ ) + |{s ∈ [0, τ ] : w(s, s) + s > τ }| ∀τ ∈ [0,+∞).

17 Note that v(·, ξ) is increasing; this is not in contradiction with the conservation of mass (5.6), which is required in 
the time-decreasing interval (τ, +∞).
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Thus w(τ, τ) satisfies the same equation as �(τ); from the uniqueness property stated in Theo-
rem 4.1, we get w(τ, τ) = �(τ) for any τ ∈ [0, +∞). Thus

v(τ, τ ) = w(τ, τ ) ∀τ ∈ [0,+∞),

and so v = w from (5.1) and (5.2).
(iii) If u01 ≤ u02, then (5.3) follows straightforwardly from (5.1) and (4.1).
(iv) It immediately follows from (5.4), (5.1), and the inclusion {s ∈ [0, τ ] : s + �(s) > ξ + h} ⊆
{s ∈ [0, τ ] : s + �(s) > ξ}.
(v) Given τ > 0, v(τ, ·) ∈ L1((τ, +∞)), since � is bounded on [0, T ] for any T > 0, and so 
the integral 

∫ +∞
τ

|{s ∈ [0, τ ] : �(s) + s > ξ}| dξ actually reduces to an integral on a bounded 
interval. Using the boundedness of u0 and that v(·, ξ) is Lipschitz, it follows that 

∫ +∞
τ

v(τ, ξ) dξ

is locally absolutely continuous in τ , hence differentiable on a set I ⊆ (τ, +∞) of full measure. 
Since � ∈ BVloc([0, +∞)), almost every point of I is a continuity point of �. Fix such a point τ : 
writing the limits of the incremental quotients around τ we get

d

dτ

+∞∫
τ

v(τ, ξ) dξ = − v(τ, τ ) +
+∞∫
τ

vτ (τ, ξ) dξ = −v(τ, τ ) +
+∞∫
τ

1(τ,v(τ,τ )+τ)(ξ) dξ

= − v(τ, τ ) + τ + v(τ, τ ) − τ = 0. �
The next observation can be used to quickly deduce v from the knowledge of �, and it is used 

to find the solution of the Riemann problem, see the pictures in Figs. 7, 8 and also Remark 8.3.

Remark 5.1 (Finding v from �). If v is as in (5.1), it is immediate to check that

v(τ, ξ) =�(ξ) − |{s ∈ [τ, ξ ] : �(s) + s > ξ}|
=�(ξ) − (ξ − τ) + |{s ∈ [τ, ξ ] : �(s) ≤ ξ − s}| ∀(τ, ξ) ∈ IIoct. (5.7)

Indeed, from (4.1) and (4.2),

�(ξ) = u0(ξ) + |{s ∈ [0, ξ ] : �(s) + s > ξ}|
=u0(ξ) + |{s ∈ [0, ξ ] : �(s) + s > ξ}|

+ (ξ − τ) − |{s ∈ [τ, ξ ] : �(s) + s ≤ ξ}| − |{s ∈ [τ, ξ ] : �(s) + s > ξ}|
=u0(ξ) + |{s ∈ [0, τ ] : �(s) + s > ξ}| + (ξ − τ) − |{s ∈ [τ, ξ ] : �(s) + s ≤ ξ}|
=v(τ, ξ) + |{s ∈ [τ, ξ ] : �(s) + s > ξ}|,

where the last equality follows from (5.1).

Without passing to coordinates (τ, ξ) a possible definition of solution (less transparent than 
Definition 3.3) is the following.
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Definition 5.1 (Distributional solution). We say that a nonnegative function v ∈ L1
loc(Iquad) de-

fined everywhere is a distributional solution to (3.4) if for any t > 0 there exists limx→0+ u(t, x) =:
u(t, 0) ∈ [0, +∞), and for any ϕ ∈ C1

c ([0, +∞) × (0, +∞)) we have

+∞∫
0

+∞∫
0

−u(ϕt − ϕx) dxdt −
+∞∫
0

+∞∫
0

1(0,u(t,0))(x)ϕ(t, x) dxdt

+
+∞∫
0

u0(x)ϕ(0, x) dx = 0.

(5.8)

Proposition 5.1 (Integral solutions and distributional solutions). Let ̂u = û(τ, ξ) be an integral 
solution of (3.4) as in Theorem 5.1. Then u := û(�) = u(t, x) is a distributional solution of (3.4). 
Conversely, let u = u(t, x) ∈ BVloc(Iquad) be a locally bounded distributional solution of (3.4). 
Then ̂u := u(�−1) satisfies (i) of Definition 3.3 and (ii) for any τ > 0 and for almost every ξ with 
(τ, ξ) ∈ IIoct.

Proof. Let ϕ = ϕ(t, x) ∈ C1
c ([0, +∞) × (0, +∞)), and set ϕ̂ := ϕ(�−1).

Suppose that ̂u is an integral solution. From (5.1) we have

u(t, x) = u0(t + x) + |{s ∈ [0, t] : �(s) + s > x + t}|, (t, x) ∈ Iquad.

Hence

−
∫

Iquad

u(ϕt − ϕx) dtdx = −
∫

Iquad

u0(t + x)(ϕt (t, x) − ϕx(t, x)) dtdx

−
∫

Iquad

|{s ∈ [0, t] : �(s) + s > x + t}|(ϕt (t, x) − ϕx(t, x)
)
dtdx

= −
+∞∫
0

u0(ξ)

( ξ∫
0

ϕ̂τ (τ, ξ) dτ

)
dξ −

+∞∫
0

( ξ∫
0

|{s ∈ [0, τ ] : �(s) + s > ξ}|ϕ̂τ (τ, ξ) dτ

)
dξ

=: I + II.

It is immediate that

I =
+∞∫
0

ϕ̂(0, ξ)u0(ξ) dξ =
+∞∫
0

ϕ(0, x)u0(x) dx.

Moreover, using (3.9),

|{s ∈ [0, τ ] : �(s) + s > ξ}| =
τ∫

1(s,�(s)+s)(ξ) ds ∀ξ ≥ τ,
0
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and hence

II = −
+∞∫
0

( ξ∫
0

( τ∫
0

1(s,�(s)+s)(ξ) ds
)
ϕ̂τ (τ, ξ) dτ

)
dξ

=
+∞∫
0

( ξ∫
0

1(τ,�(τ )+τ)(ξ)ϕ̂(τ, ξ) dτ

)
dξ =

∫
Iquad

1(0,u(t,0))(x)ϕ(t, x) dtdx,

where the second equality follows integrating by parts, and the last equality follows from (5.2). 
This proves that u is a distributional solution of (3.4).

Conversely, suppose that u ∈ BVloc(Iquad) ∩ L∞
loc(Iquad) is a distributional solution of (3.4). 

From (5.8) it follows

−
+∞∫
0

ξ∫
0

û(τ, ξ)ϕ̂τ (τ, ξ) dτdξ −
+∞∫
0

ξ∫
0

1(τ,̂u(τ,τ )+τ)(ξ)ϕ̂(τ, ξ) dτdξ +
+∞∫
0

u0(ξ)ϕ̂(0, ξ) dξ = 0.

Taking ϕ with compact support in IIoct, it follows that the distributional partial derivative Dτ û, 
which is a measure with locally finite total variation in IIoct, satisfies

Dτ û(τ, ξ) = 1(τ,̂u(τ,τ )+τ)(ξ) (5.9)

in the sense of measures in IIoct. Since the right-hand side of (5.9) is a locally integrable function 
(taking values in {0, 1}), Dτ û coincides with its absolutely continuous part, the density of which 
we denote by ∇τ û. For any ξ ∈ [0, +∞) consider the slice û(ξ) : [0, ξ ] → R of û, i.e., the re-
striction of u in Iquad to the horizontal line passing through ξ . By [1, Proposition 4.35] for almost 
every ξ ∈ [0, +∞) we have û(ξ) ∈ BVloc([0, ξ ]), its distributional derivative ˙̂u(ξ) is absolutely 
continuous, and ˙̂u(ξ)(τ ) = ∇τ û(τ, ξ) for almost every τ ∈ [0, ξ ]. We deduce

˙̂u(ξ)(τ ) = 1(τ,̂u(τ,τ )+τ)(ξ) for a.e. τ ∈ [0, ξ ].
Integrating, (3.8) follows for almost any ξ ≥ 0 and for almost every τ ∈ [0, ξ ], and hence for any 
τ ∈ [0, ξ ]. �
6. A Lyapunov functional

The functional L : D(L) ⊂ L2(R) → [0, +∞), corresponding to the continuous version of 
(2.4), is

L(u) :=
+∞∫
0

x+u(x)∫
x

y dy dx,

where the domain D(L) of L consists of all nonnegative u ∈ L2((0, +∞)) such that xu ∈
L1((0, +∞)), and the height y has the meaning of a potential energy. It can be evaluated as
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L(u) = 1

2

+∞∫
0

(
u2(x) + 2xu(x)

)
dx = 1

2
‖u‖2

L2 + (x,u)L2

and is a strictly convex functional.

Proposition 6.1 (Stationary solutions). Fix m > 0. Then the solution of the variational problem

min
{
L(u) : u ∈ D(L),

+∞∫
0

u(x) dx = m
}
,

is

u(x) = max
{√

2m − x,0
}

∀x ∈ [0,+∞).

Proof. Given u ∈ D(L), introduce the function ϕ = √
u, so that

u(x) = ϕ2(x) for every x ≥ 0.

In this way the pointwise constraint u(x) ≥ 0 is trivially satisfied for every x ≥ 0 and the varia-
tional problem reads as follows:

min
ϕ

1

2

+∞∫
0

(
ϕ4(x) + 2xϕ2(x)

)
dx subject to

+∞∫
0

ϕ2(x) dx = m.

The Euler-Lagrange equation associated to the above variational problem is

4ϕ3(x) + 4xϕ(x) − 2λϕ(x) = 0 ⇐⇒ ϕ(x)

(
ϕ2(x) + x − λ

2

)
= 0,

where λ denotes the Lagrange multiplier of the mass constraint. Such a condition is clearly 
satisfied if

ϕ ≡ 0 or ϕ2(x) = λ

2
− x ∀x ∈ [0,+∞),

or, equivalently

u ≡ 0 or u(x) = λ

2
− x ∀x ∈ [0,+∞).

We have thus determined that a stationary point of the variational problem has the form

u(x) = max

{
λ − x,0

}
∀x ∈ [0,+∞).
2
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In order to determine λ we impose the mass constraint on u, obtaining

m =
+∞∫
0

u(x)dx =
λ/2∫
0

(
λ

2
− x

)
dx =

(λ2

4
− λ2

8

)
= λ2

8
,

which implies λ = 2
√

2m. Plugging it in the expression for u and recalling that L is strictly 
convex, we get the statement. �
6.1. L decreases along a solution

Let u0 ∈ D(L) ∩ L∞((0, +∞)) satisfy (4.4) and denote by û the solution given by Theo-
rem 5.1. In coordinates (τ, ξ) we have

L(̂u(τ )) =
+∞∫
τ

ξ−τ+û(τ,ξ)∫
ξ−τ

y dydξ = 1

2

+∞∫
τ

(
û(τ, ξ)2 + 2(ξ − τ )̂u(τ, ξ)

)
dξ,

where û(τ )(·) := û(τ, ·), and one checks that û(τ ) ∈ D(L) for any τ ≥ 0. We claim that for all 
σ, τ ∈ [0, +∞) with σ < τ we have

L(̂u(τ )) +
τ∫

σ

+∞∫
r+�(r)

û(r, ξ) dξ dr = L(̂u(σ )), (6.1)

where we recall that �(r) = û(r, r), with � given by Theorem 4.1.
Since ̂u(·, ξ) is Lipschitz, the function τ → L(̂u(τ )) is locally absolutely continuous. Hence, 

at each of its differentiability points which are also continuity points for � (hence, at almost every 
τ ≥ 0) we have, using also (5.2),

d

dτ
L(̂u(τ )) = −1

2
�(τ)2 +

+∞∫
τ

[̂u(τ, ξ) + ξ − τ ]̂uτ (τ, ξ) dξ −
+∞∫
τ

û(τ, ξ) dξ

= − 1

2
�(τ)2 +

+∞∫
τ

[̂u(τ, ξ) + ξ − τ ]1(τ,τ+�(τ))(ξ) dξ −
+∞∫
τ

û(τ, ξ) dξ

= − 1

2
�(τ)2 −

+∞∫
τ+�(τ)

û(τ, ξ) dξ +
τ+�(τ)∫

τ

(ξ − τ) dξ

= −
+∞∫

τ+�(τ)

û(τ, ξ) dξ ≤ 0.

(6.2)

The nonnegative (double) integral term in (6.1) can be considered as a dissipated quantity by the 
system, when passing from time σ to a later time τ .
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7. Examples

Given u0, our strategy to construct a solution of (1.3) is as follows: first compute � using one 
of the methods illustrated in Section 4 (see Remark 4.4); next, using (5.1), compute an integral 
solution in variables (τ, ξ) and, whenever convenient, re-express it in variables (t, x).

Example 7.1 (Stationary solutions). Let m ≥ 0,

u0(x) := max
{√

2m − x,0
}

∀x ≥ 0, (7.1)

so that m = ∫
[0,+∞)

u0 dx. Then

u(t, x) := u0(x), (t, x) ∈ [0,+∞) × [0,+∞) (7.2)

is a stationary solution of (1.3), and �(t) = √
2m for any t ≥ 0,

	(u) = {(t,√2m) : t ≥ 0}.
In (τ, ξ)-variables, u(τ, ξ) = u0(ξ − τ) is a traveling wave.

The next example concerns the initial condition in Example 4.1: it shows that maxima can 
increase, and also that smoothness can be lost.

Example 7.2 (Constant initial condition, II). Let

u0 = 1[0,+∞), (7.3)

which has infinite mass. Recall that � and L� have been computed in (4.22) and (4.23), see Figs. 1
and 2.

For (t, x) in the interior of IIoct \ subgraph+(�) we have u(t, x) = 1. Observe that

(t, x) ∈ subgraph+(�) ∩ ([Tk,Tk+1] × [0,+∞)) ⇒ t + x ∈ [Tk,Tk+1] ∪ [Tk+1, Tk+2],
and we have t + x ∈ [Tk, Tk+1] when 0 ≤ x ≤ −t + Tk+1 while t + x ∈ [Tk+1, Tk+2] when 
−t +Tk+1 ≤ x < �(t). Equivalently, in (τ, ξ) variables, we can split subgraph+(�) ∩([Tk, Tk+1] ×
[0, +∞)) as the union of two disjoint regions:

SI :={(τ, ξ) ∈ IIoct : Tk ≤ τ ≤ Tk+1, τ ≤ ξ ≤ Tk+1},

SII :=
{
(τ, ξ) ∈ IIoct : Tk ≤ τ ≤ Tk+1, Tk+1 < ξ < L�(τ) = τ + τ

k + 1
+ k

2
+ 1

}
.

For (τ , ξ) ∈ SI, in order to find the time spent by the characteristic line {ξ = ξ} in subgraph+(�)

before reaching the vertical axis, we need to compute the τ -coordinate of the intersection point 
of {ξ = ξ} with graph(L�)|[Tk−1,Tk]; with ξ = L�(τ) = k+1

k
τ + k+1

2 (see (4.23)) we get

τ = k (
ξ − k + 1)

.

k + 1 2

28



G. Bellettini, A. Betti and M. Paolini Journal of Differential Equations 396 (2024) 1–43
Fig. 2. Graph of L� for Example 7.2.

The time spent is therefore τ − τ = τ − k
k+1 (ξ − k+1

2 ) and so, recalling (5.1) and (7.3),

v(τ , ξ) = 1 + τ − k

k + 1

(
ξ − k + 1

2

)
∀(τ , ξ) ∈ SI. (7.4)

For (τ , ξ) ∈ SII, we need the τ -coordinate of the intersection point of {ξ = ξ} with
graph(L�)|[Tk,Tk+1]; with ξ = L�(τ) = k+2

k+1τ + k+2
2 we get

τ = k + 1

k + 2

(
ξ − k + 2

2

)
.

The time spent is therefore τ − τ = τ − k+1
k+2

(
ξ − k+2

2

)
, and so

v(τ , ξ) = 1 + τ − k + 1

k + 2

(
ξ − k + 2

2

)
∀(τ , ξ) ∈ SII. (7.5)

Note (see Fig. 3) that for any k ∈ N ,

(i) for any τ ∈ (Tk, Tk+1), the derivative of v(τ , ·) has two jumps, corresponding to the inter-
section of {τ = τ } with {ξ = Tk+1} and with graph(L�)|(Tk,Tk+1);

(ii) for any ξ ∈ (Tk, Tk+1), the derivative of v(·, ξ) has one jump, corresponding to the intersec-
tion of {ξ = ξ} with graph(L�)|(T ,T ).
k k+1
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Fig. 3. Time-slices of the solution u in Example 7.2.

Going back to (t, x)-coordinates, from (7.4) and (7.5) we have, for any k ≥ 0 and any t ∈
[Tk, Tk+1],

u(t, x) =

⎧⎪⎪⎨⎪⎪⎩
t

k+1 − k
k+1x + 1 + k

2 for 0 ≤ x ≤ −t + Tk+1,

t
k+2 − k+1

k+2x + 1 + k+1
2 for −t + Tk+1 < x ≤ t

k+1 + 1 + k
2 ,

1 for x > t
k+1 + 1 + k

2 .

(7.6)

Function u is Lipschitz, piecewise affine, it forms an initial plateau, originating from x = 1, that 
moves vertically upwards with speed one, which is next linearly interpolated with the constant 
one (which does not move, and is eroded), the x-slope of the interpolants being equal to −1/2. 
The two points (both originating from x = 1) on the x-axis corresponding to the two corners in 
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the graph of u(t, ·), t ∈ (0, 1] move with unit speed, one toward the left and the other one toward 
the right; see Fig. 3.

Example 7.3 (Increasing jump). Let u0(x) = 1[0,1) + 21[1,+∞). For t ∈ [0, 1] a solution is 
u(t, x) = 1[1−t,1)(x) + (2 + t)1[1,1+t) + 21[1+t,+∞). In this case, the initial increasing jump trav-
els toward the left at unit constant speed and then disappears, and meanwhile a new decreasing 
jump is formed during the evolution.

8. The Riemann problem

The next example, which has been initially discussed in Example 4.2, exhibits interesting 
phenomena (Figs. 7, 8), and shows in particular a solution for which:

(i) the initial jump persists for some time, it moves with unit speed toward the origin, and then 
disappears;

(ii) at suitable later times new jumps may form (and persist for some time with a similar behavior
as in (i));

(iii) there are countably many critical times, and so vertical rearrangement is necessary a count-
able number of times;

(iv) the solution converges to a stationary solution in infinite time;
(v) the Lyapunov functional along the solution is Lipschitz and is constant excluding segments 

which are projection on the t-axis of critical segments, where instead it strictly decreases.

Let

u0 = 1[0,1). (8.1)

In Example 4.2 we have found � in [0, 11 + 3/2]; here we give the general rule for finding �
(recall that � may have jumps, and over a jump point there is a vertical segment in its general-
ized graph; correspondingly, we have a minimal and a maximal value of �; for convenience, the 
generalized graph of � contains the initial vertical segment {0} × [0, 1]).

Our aim is to define inductively a polygonal curve that we shall subsequently prove (Theo-
rem 8.1) to be the graph of the function � with the initial condition (8.1).

Inspired by the computations in Example 4.2 let us first define a real sequence (αn)n≥0 and 
a sequence (βn)n≥0, with βn ∈ [−∞, 0) ∪ (0, +∞), that will be shown to be the slopes of the 
increasing (resp. decreasing18) segments of the graph of �; it is convenient to introduce also a 
real sequence (β∗

n)n≥1. Specifically:

Definition 8.1 (The sequences (αn), (β∗
n), (βn)). We set

α0 := 1, β0 := −∞, (8.2)

and for any n ≥ 0,

18 In Lemma 8.1 we shall prove that βn ∈ [−∞, 0).
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Fig. 4. The Riemann problem with u0 in (8.1): graphs of � (the polygonal defined by (8.10)) and of L� (the bold one). 
At the local maximum T9 = 37/3 the value of � is M9 = 40/27 which is strictly smaller than the one (M8 = 3/2) at 
time T8 = 11. At the first local minimum t9 > T9 the value of � is m9 = 27/20 which is strictly larger than the value 
(m8 = 4/3) of � at t8. The first critical time (Definition 4.2) is t = 1, and the second one is t = 37/3. The distance 
tn+1 − tn = 4/3 between two local minimizers (after t = 1) remains constant before the first critical time; next it slightly 
increases, remaining constant before the second critical time, and so on.

1

αn+1
:= 1

αn

+ 1, i.e. αn = 1

n + 1
,

1

β∗
n+1

:=

⎧⎪⎨⎪⎩
1
βn

+ 1 if βn �= −1,0,

1 if βn = −∞,

0− if βn = −1,{
β∗

n+1 if β∗
n+1 ≤ 0,

(8.3)
βn+1 :=
αn+1 + αn+2 − β∗

n+1 if β∗
n+1 > 0,
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Fig. 5. Vertical rearrangement takes place in the interval (t∗
n+1, T ∗

n+1) where the thin zig-zag line (which is part of the 
polygonal P∗) is no-longer a graph. The result of the rearrangement is the bold decreasing segment (which is part of the 
polygonal P) with negative slope βn and can be obtained by linear interpolation. In the previous interval (t∗n , T ∗

n ) we 
may have either vertical rearrangement (top figure; the segments over (Tn−1, tn−1) and (t∗n , tn) are both critical) or no 
vertical rearrangement (bottom figure; only the segment over (Tn, tn) is critical).

where the value 0− indicates that when computing its reciprocal we select the value −∞, i.e., 
β∗

n+1 = −∞.

For instance, 1/β∗
1 = 1, β1 = α1 + α2 − 1 = −1/6.

Set

T0 := 0, M0 := 0, t0 := 0, m0 := 1. (8.4)

Now, we iteratively define nine sequences (the first five sequences could be considered as just 
auxiliary), as follows:
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Definition 8.2 (The sequences (t∗n), (m∗
n), (T

∗
n ), (M∗

n), (�∗
n), (Tn), (Mn), (tn), (mn)). For n ≥ 0

define the quantities:

t∗n+1 := tn + mn, m∗
n+1 := mn, T ∗

n+1 := Tn + Mn, M∗
n+1 := Mn, (8.5)

�∗
n := T ∗

n+1 − t∗n+1.

Furthermore:

(i) if �∗
n ≤ 0 we set

Tn+1 := T ∗
n+1 + δn, Mn+1 := M∗

n+1 + 2δn,

tn+1 := t∗n+1, mn+1 := m∗
n+1,

(8.6)

where δn is 1 if n = 0, zero otherwise;
(ii) if �∗

n > 0 we set

Tn+1 := t∗n+1, Mn+1 := M∗
n+1 − �∗

nαn,

tn+1 := T ∗
n+1, mn+1 := m∗

n+1 + �∗
nαn+1.

(8.7)

For instance �∗
0 = −1, T1 = 1, M1 = 2, t1 = 1, m1 = 1, �∗

1 = 1, T2 = 2, M2 = 3/2, t2 = 3, 
m2 = 4/3, T3 = 7/2, M3 = 3/2.

Clearly, for all n ≥ 0

0 < Tn ≤ Tn+1, 0 < tn ≤ tn+1, Mn+1 ≤ Mn ≤ 2, mn+1 ≥ mn ≥ 1.

Remark 8.1 (�∗
n as an indicator of rearrangement). We shall prove in Proposition 8.1 that Tn ≤

tn for all n ≥ 0; this however does not entail T ∗
n+1 ≤ t∗n+1. If this is not the case we shall need to 

perform the so-called vertical rearrangement, as explained next19: so if �∗
n ≤ 0 there will be no 

vertical rearrangement, whereas if �∗
n > 0 there will be vertical rearrangement.

In Proposition 8.2 we shall see that condition T ∗
n+2 > t∗n+2 is equivalent to β∗

n+1 > 0.

We now use the sequences defined in (8.5), (8.6), (8.7) as coordinates of points in the (t, y)-
plane, setting

gn := (tn,mn), Gn := (Tn,Mn), g∗
n := (t∗n ,m∗

n), G∗
n := (T ∗

n ,M∗
n),

and observe that from (8.5) that

g∗
n+1 = R(gn), G∗

n+1 = R(Gn), (8.8)

where R is the affine transformation of Section 4.1.

19 For example, the first rearrangement happens for n + 1 = 2, leading to Mn+1/mn+1 = (3/2)2 · 1/2 = 9/8 > 1; the 
second one is for n + 1 = 9, leading to M9/m9 = (10/9)2 · 8/9 = 800/729 > 1, and the third one for n + 1 = 11, with 
M11/m11 = (12/11)2 · 729/800 = 6561/6050 > 1.
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Definition 8.3 (Polygonals P∗ and P). The polygonal P∗ is defined by the points

G∗
1, g

∗
1 ,G∗

2, g
∗
2 , . . . ,G∗

n+1, g
∗
n+1, . . . (8.9)

and the polygonal P is defined by the points

G0, g0,G1, g1, . . . ,Gn,gn, . . . (8.10)

We will show that the function having graph P is the result of the vertical rearrangement 
applied to the open set enclosed by P∗ and the positive t-axis, after addition of the initial datum 
u0. See also Figs. 5 and 6.

Proposition 8.1 (Characterization). The sequences (Tn), (tn), (Mn), (mn), (M∗
n), (m∗

n) defined 
in (8.4) and in Definition 8.2 can be characterized as follows: for all n > 0

Tn+1 = min{Tn + Mn, tn + mn}, tn+1 = max{Tn + Mn, tn + mn}, (8.11)

Mn+1 = αn(1 + Tn+1), mn+1 = αn+1(1 + tn+1), (8.12)

M∗
n+1 = αn(1 + T ∗

n+1), m∗
n+1 = αn+1(1 + t∗n+1). (8.13)

In particular, mn+1 > 0, Mn+1 > 0, and

Tn+1 ≤ tn+1.

Proof. Let n > 0. If �∗
n ≤ 0, i.e., Tn +Mn ≤ tn +mn, then Tn+1 = Tn +Mn and tn+1 = tn +mn, 

while if �∗
n > 0, i.e., Tn + Mn > tn + mn, then Tn+1 = tn + mn and tn+1 = Tn + Mn, and (8.11)

follows.
For n ≥ 0 let y = rn(t) := αn(1 + t) denote the equation of the line with slope αn through 

(−1, 0). With a small abuse of notation we also denote by rn the line itself. The key observation 
is that the affine transformation R maps line rn onto line rn+1. Given that g0, G1 ∈ r0, we now 
argue by induction to prove that for any n ≥ 1 points gn, g∗

n, Gn+1, G∗
n+1 ∈ rn. Now suppose 

gn, Gn+1 ∈ rn, then (8.8) implies that g∗
n+1, G

∗
n+2 ∈ rn+1. If gn+1 �= g∗

n+1, i.e. rearrangement 
occurs at step n (resp. Gn+2 �= G∗

n+2, i.e. rearrangement occurs at step n + 1), equation (8.7)
tells us that the segment g∗

n+1gn+1 (resp. Gn+2G
∗
n+2) has slope αn, so that the “unstarred” points 

are the result of suitably moving along line rn+1 the corresponding “starred” point. This con-
cludes the induction step and the claim follows together with the equivalent assertions (8.12) and 
(8.13). �
Remark 8.2. It follows from Proposition 8.1, using e.g. αn

αn+1
= 1 + αn that the sequences (tn)

and (Tn) can be decoupled from the sequences (mn) and (Mn), and for all n > 0

Tn+1 = min
{
αn−1 + αn−1

αn

Tn,αn + αn

αn+1
tn

}
,

tn+1 = max
{
αn−1 + αn−1

Tn,αn + αn
tn

}
.

(8.14)
αn αn+1
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Concerning the values (mn), (Mn), in the interesting case �∗
n > 0 (rearrangement), enforcing 

(8.5), (8.7), (8.12), (8.13), we obtain

�∗
n > 0 =⇒ Mn+1 = αn

αn+1
mn, mn+1 = αn+1

αn

Mn (8.15)

leading to the remarkable fact that mn+1Mn+1 = mnMn regardless whether we have rearrange-
ment. Consequently

mnMn = m1M1 = 2 ∀n ≥ 1. (8.16)

Recalling that (mn) is non-decreasing and (Mn) is non-increasing, using (8.11) we get

mn ≥ 1, Mn ≤ 2,

tn ≥ t1 + m1 + m2 + · · · + mn−1 ≥ t1 + (n − 1)m1 = n,

Tn ≤ T1 + M1 + M2 + · · · + Mn−1 ≤ T1 + (n − 1)M1 = 2n − 1.

Lemma 8.1 (Sign of βn). We have βn ∈ [−∞, 0) and βn ∈ [−∞, −1 + αn + αn+1] for all n ≥ 0.

Proof. The result is clearly true for n = 0. We first prove βn ∈ [−∞, 0) for all n ∈ N . 
Suppose by induction that βn ∈ [−∞, 0) for some n ≥ 0. If βn ∈ [−1, 0) then (8.3) gives 
βn+1 = β∗

n+1 = βn

βn+1 < 0. Suppose now that βn < −1, i.e. β∗
n+1 ≥ 1. We have that αn + αn+1

is (strictly) decreasing and α1 + α2 = 5
6 , so that (8.3), second case in definition of βn+1, entails 

βn+1 = αn+1 + αn+2 − β∗
n+1 ≤ 5

6 − 1 < 0.
Now, let us prove βn ∈ [−∞, −1 + αn + αn+1] for all n ∈ N . We first observe that in case 

of no vertical rearrangement (β∗
n < 0) we have βn < βn−1, so that we need to prove the result 

only in case of vertical rearrangement (βn < 0 < β∗
n ). Definition (8.3) of β∗

n entails 1/β∗
n =

1/βn−1 + 1 ≤ 1. It follows β∗
n ≥ 1, so that βn = −β∗

n + αn + αn+1 ≤ −1 + αn + αn+1 (which is 
< 0 if n ≥ 1). �

In connection with the next result, it is useful to notice that a segment/line of slope γ is 
transformed via R into a segment/line of slope γ ′ with 1

γ ′ = 1
γ

+ 1 (with the position 1
0 = ∞).

Proposition 8.2 (Slopes of polygonals). For any n ≥ 0 we have:

(i) points gn and Gn+1 lie of a line having slope αn;
(ii) the segment with endpoints G∗

n+1, g∗
n+1 has slope β∗

n ;
(iii) the segment with endpoints Gn+1, gn+1 has slope βn;
(iv) �∗

n > 0 ⇐⇒ β∗
n > 0;

(v) mn+1 < Mn+1;
(vi) tn < Tn+1.

Proof. To prove (i)-(iv) we argue by induction. All assertions (i) to (iv) are true for n = 0. 
Suppose that all claims are true for n and let us prove them for n + 1. Segment s from g∗

n to 
G∗

n+1 is obtained from segment from gn−1 to Gn via the affine transformation R, hence it has 
inverse slope given by 1 + 1, so that its slope is αn. Point Gn+1 (resp. gn) either coincides 
αn−1
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with G∗
n+1 (resp. g∗

n), the right (resp. left) endpoint of s, or, in case of vertical rearrangement, 
can be checked to lie on segment s using the first equation in (8.7) (resp. the second equation 
taking n in place of n + 1). In either case the corresponding segment from gn to Gn+1 has itself 
slope αn. Likewise segment r with endpoints G∗

n+1, g∗
n+1 has inverse slope 1

βn−1
+ 1, i.e. slope 

β∗
n . This entails �∗

n > 0 ⇐⇒ β∗
n > 0. In case of no vertical rearrangement (T ∗

n+1 ≤ t∗n+1) we 
have βn = β∗

n and we have finished. In case of vertical rearrangement we have both �∗
n > 0 and 

β∗
n > 0, the slope of Gn+1gn+1 can be obtained by computing the vertical displacement of a point 

that starts from Gn+1, moves to G∗
n+1 along a segment with slope αn, then to g∗

n+1 (slope β∗
n ), 

then to gn+1 (slope αn+1). The horizontal displacements have size �∗
n, −�∗

n, �∗
n for a combined 

slope of αn +αn+1 −β∗
n , consistently with the definition of βn (Fig. 5). This concludes the proof 

of (i)-(iv).
We are left with (v) and (vi), which we also prove by induction, observing that the claims are 
true for n = 0.

(v). If �∗
n ≤ 0 we have mn+1 = mn < Mn = Mn+1. If �∗

n > 0 we use that βn < 0 (Lemma 8.1) 
and item (iii): we have mn+1 − Mn+1 = βn�

∗
n < 0.

(vi). Since mn+1 ≥ mn we get Mn+1 > mn and from item (i) and the fact that αn > 0 we 
directly obtain

Tn+1 − tn = 1

αn

(Mn+1 − mn) > 0. � (8.17)

The sequence of points so constructed defines the polygonal P which is the graph of a func-
tion �. We finally prove:

Theorem 8.1. The function � so defined verifies (4.1).

Proof. In view of Section 4.1, we only need to compute the vertical rearrangement of the multi-
valued function having polygonal P∗ as graph. We have vertical rearrangement only in segments 
(Tn+1, tn+1) where �∗

n > 0. Since each of the three values varies linearly, the result can be com-
puted by linear interpolation between the values Mn+1 and mn+1, giving, except for the interval 
[0, 1], the polygonal P as graph. The result follows after the addition of u0. �

In the end, (tn)n≥1 is the sequence of positive local minima of �, mn := �(tn), Tn+1 ∈ (tn, tn+1]
is the local maximum of � in [tn, tn+1], and Mn+1 := �(Tn+1). Equality Tn+1 = tn+1 holds only 
at a jump, where �(tn+1) (resp. �(Tn+1)) indicates here the smallest (resp. largest) value of �.

Remark 8.3 (Recovering geometrically the solution from �). Having constructed, although not 
in closed form, function �, we are in a position to recover from it the solution v(τ, ·) at any given 
positive time τ . To this aim we can resort to Remark 5.1, which provides a convenient way to 
achieve our goal. Particularly important is the term |{s ∈ [τ, ξ ] : �(s) ≤ ξ − s}| in formula (5.7), 
which can actually be written in a slightly different way, if we consider the image

A∗ := R(subgraph+(�)).

A∗ is bounded by the polygonal P∗ and the positive τ -axis, it gets intersected with the vertical 
line lifted from abscissa ξ , and more specifically
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Fig. 6. Various typical situations in the reconstruction of v(τ, ·) at specific times during the evolution of the Riemann 
problem. The bold polygonal represents the graph of v(τ, ·), the thin lines display part of the polygonals P and P∗
(defined by (8.10) and (8.9) respectively), whereas the bold dashed line is the graph of v(τ, ξ) + (ξ − τ). R stands for 
(vertical) rearrangement.

|{s ∈ [τ, ξ ] : �(s) ≤ ξ − s}| = |{(ξ, s) : s ∈ [0, ξ − τ ]} \ A∗|

which, in view of (4.1) and (4.2), can be recognized as a “partial” vertical rearrangement of A∗
happening only inside IIoct.

This is illustrated in Fig. 6, containing the evolution of the present Example at specific times. 
At time τ = 0.8 the “zig-zag” in polygonal P∗, in particular the triangular “void” that is bound 
to be filled by the vertical rearrangement, is completely below the dashed line with slope 1. This 
implies that no rearrangement is taking place yet in the reconstruction of v(τ, ·) and we simply 
use the top segment in the zig-zag of P∗. This gives the same result as re-adding the size of the 
void triangle intersected with the vertical line at ξ to the quantity �(ξ) − (ξ − τ). At time τ = 1.4
the zig-zag (the “void” triangle) is partially above the dashed line with slope 1. This implies 
partial vertical rearrangement of only the part of A∗ lying above this line, which is the same 
as re-adding to �(ξ) − (ξ − τ) that part of the vertical segment at ξ that is in the void triangle 
and below the line at 45 degrees. At time τ = 1.8 the zig-zag is completely above the line at 45
degrees, so that there is no portion of the void triangle below that line and there is no contribution 
from {(ξ, s) : s ∈ [0, ξ − τ ]} \ A∗ in the reconstruction of v. Finally, time τ = 3.2 illustrates the 
situation where there is no vertical rearrangement at all in function �. Clearly in this case we also 
have no contribution from {(ξ, s) : s ∈ [0, ξ − τ ]} \ A∗.

It should be noted that the Lyapunov functional decreases strictly exactly when we have only 
partial rearrangement (e.g. in a neighborhood of time τ = 1.4 in Fig. 6).
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Once � is known, the solution u is uniquely determined via Theorem 5.1 (and using the map 
�−1); for instance (see Figs. 7 and 8):

u(t, x) =

⎧⎪⎨⎪⎩
1 + t t ∈ [0,1), 0 ≤ x < 1 − t,

− 1
2x + 1

2 t + 1
2 t ∈ [0,1), 1 − t < x ≤ 1 + t,

0 t ∈ [0,1), x ≥ 1 + t.

(8.18)

Note that u is discontinuous along {(t, x) : t ∈ [0, 1], x + t = 1}. Also

lim
s↑1

u(s, x) =
(

1 − 1

2
x
)

∨ 0, x ∈ (0,+∞),

which is piecewise affine and Lipschitz, and

u(t, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t
2 − 1

2 (x − 1) 0 ≤ x ≤ 2 − t,

11
6 − 7

6x − t
6 2 − t < x ≤ t

2 + 1
2 ,

3
2 − x

2 − t
2

t
2 + 1

2 < x ≤ 3 − t,

0 x > 3 − t,

t ∈ [1,5/3]. (8.19)

Recalling (6.2), one checks that τ ∈ [0, +∞) → L(̂u(τ )) is Lipschitz and nonincreasing, 
strictly decreasing (quadratically) only on those intervals where L� becomes strictly decreas-
ing. In particular, since L(u0) = 1, L(u(1−, ·)) = 1, it follows L(u(t, ·)) = 1 for all t ∈ [0, 1]. In 

addition L 
(
u
(

5
3 , ·

))
= 17

18 < 1. For t ∈ (5/3, 11) the value L(u(t, ·)) remains constant, and next 
it decreases slightly in the interval [11, 11 + 3/20].

8.1. Asymptotic properties of the solution

A direct consequence of the results of the previous section is the convergence of the solution 
to a stationary configuration (described in Example 7.1) in infinite time.

From (v) of Proposition 8.2 it follows

1 < λ− := lim
n→+∞mn ≤ λ+ := lim

n→+∞Mn < 2. (8.20)

This immediately leads to the desired convergence property as t → +∞.

Proposition 8.3 (Asymptotic convergence to the stationary solution). We have

λ+ = λ− = √
2 (8.21)

and limt→+∞ ‖u(t, ·) − ustat(·)‖L∞([0,+∞)) = 0, where ustat(x) = max{√2 − x, 0} is the station-
ary solution with unit mass.
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Fig. 7. Time-movie of the solution of the Riemann problem (u0 = 1[0,1)), up to time t = 8.80.
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Fig. 8. Time-movie of the solution of the Riemann problem (u0 = 1[0,1)), from time t = 9.00 up to time t = 17.8.
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Proof. From the definition we have Tn+1 ≤ T ∗
n+1. Using Tn ≤ tn (Proposition 8.1) we obtain the 

estimate

Tn+1 − tn ≤ T ∗
n+1 − Tn = Mn ≤ 2.

Then (8.21) follows from

lim
n→∞(Mn+1 − mn) = lim

n→∞αn(Tn+1 − tn) ≤ 2 lim
n→∞αn = 0,

where we use (8.17).
Hence limt→+∞ sups>t |�(s) −

√
2| = 0, which, from (5.1), implies the desired convergence 

of the solution to ustat. �
8.2. Final examples

Example 8.1 (Parent of 1[0,1): creation of a decreasing jump). Let

u0(x) = (2 − 2x) ∨ 0 ∀x ≥ 0.

We have �(t) = −t + 2 for t ∈ (0, 1], and �(t) = t for t ∈ [1, 2]. Applying transformation R for 
t ∈ [0, 1] produces the vertical segment {1} × [1, 2]. We have

u(1, ·) = 1[0,1).

The flow for times larger than 1 is then the same as the flow of the Riemann problem.

Example 8.2 (Riemann problem with a parameter). Let u0 = 1[0,a)
, with a > 1. Let T be ob-

tained as the intersection between the lines {x − t = 1} and {x + t = a}, i.e., T = a−1
2 , and set 

T1 = min(1, a−1
2 ). The solution is given, for any (t, x) ∈ [0, T1] × (0, +∞) by

u(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + t if x ≤ 1 − t,

− x
2 + t

2 + 3
2 if 1 − t ≤ x ≤ 1 + t,

1 if 1 + t ≤ x ≤ a − t,

0 if x + t ≥ a,

as depicted in Fig. 9.

Stationary solutions can be reached also in finite time, as shown in this final example; notice 
that here the positivity condition (4.4) on u0 is not satisfied.

Example 8.3 (Reaching a stationary solution in finite time). Let u0 be the linear interpolation of 
u0(0) = 0, u0(1) = 1/2 and u0(2) = 0. Then

�(t) =
{

t if t ∈ [0,1],
1 if t > 1,
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Fig. 9. Time-slices of the solution u1(t, x) described in Example 8.2 (a = 3), for t in the allowed range: the slope of the 
oblique segment is −1/2.

and the corresponding solution u reaches the stationary solution max{1 − x, 0} at time t = 1.

Data availability

No data was used for the research described in the article.
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