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Abstract: The F-Box and WD Repeat Domain Containing 7 (FBXW7) protein has been shown to regulate
cellular growth and act as a tumor suppressor. This protein, also known as FBW7, hCDC4, SEL10
or hAGO, is encoded by the gene FBXW7. It is a crucial component of the Skp1-Cullin1-F-box (SCF)
complex, which is a ubiquitin ligase. This complex aids in the degradation of many oncoproteins, such
as cyclin E, c-JUN, c-MYC, NOTCH, and MCL1, via the ubiquitin-proteasome system (UPS). The FBXW7
gene is commonly mutated or deleted in numerous types of cancer, including gynecologic cancers
(GCs). Such FBXW7 mutations are linked to a poor prognosis due to increased treatment resistance.
Hence, detection of the FBXW7 mutation may possibly be an appropriate diagnostic and prognostic
biomarker that plays a central role in determining suitable individualized management. Recent studies
also suggest that, under specific circumstances, FBXW7 may act as an oncogene. There is mounting
evidence indicating that the aberrant expression of FBXW7 is involved in the development of GCs. The
aim of this review is to give an update on the role of FBXW7 as a potential biomarker and also as a
therapeutic target for novel treatments, particularly in the management of GCs.

Keywords: FBXW7; ubiquitin-proteasome system; gynecologic cancers; epigenetic; mutations; miRNAs;
LncRNAs; target therapy

1. Introduction

Protein degradation is a crucial process for various cellular processes, such as cell growth,
cell cycle, differentiation, and apoptosis [1,2]. Dysregulation of protein degradation machinery
can result in aberrant protein stabilization, leading to oncogenesis due to the accumulation of
oncogenic proteins. The ubiquitin-proteasome system (UPS) is the primary regulatory pathway
leading to protein degradation in eukaryotic cells [3]. The UPS comprises E1, a ubiquitin-
activating enzyme; E2, a ubiquitin-conjugating enzyme; and E3, a ubiquitin ligase. The activa-
tion of ubiquitin by E1 is followed by the transfer of ubiquitin to E2 via a thioester exchange
reaction. In the end, ubiquitin is transferred from E2 to a substrate using E3, leading to the
substrate’s degradation by the 26S proteasomes. Modulation of E3 ubiquitin ligase function has
been demonstrated to be a significant factor in cancer initiation and progression [4,5]. Among
the different types of E3 ubiquitin ligases, the Skp1-Cullin1-F-box (SCF) complex is the most
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well-studied. The SCF complex comprises Cul1, F-box protein, Rbx1, and Skp1 [5]. The catalytic
core of SCF is the Cul1 domain, whereas the Skp1 domain adds the F-box to the Cul1 and Rbx1
domains, which is critical for the SCF complex’s catalytic function [6,7]. The F-box domain
acts as a substrate receptor and can recruit substrates for subsequent ubiquitination [5]. F-box
proteins behave as substrate recognition subunits that confer specificity to individual SCF-type
ligases. An F-box domain within the NH2-terminal region of each F-box protein can bind to
the SKP1-CUL1 complex, while there are numerous protein-interaction domains in the COOH-
terminal region which are responsible for substrate recognition. F-box proteins are classified
into three types based on their different COOH-terminal regions: FBXL (containing leucine-
rich–repeat domains), FBXW (containing WD40-repeat domains), and FBXO (containing other
protein-interaction domains or a non-recognizable domain). Among approximately 70 F-box
proteins that have been identified in humans, FBXW7 (also known as FBW7, hCDC4, hAGO, or
Sel10) has the highest frequency of mutations in cancer [1,8–11], indicating its crucial role as a tu-
mor suppressor in oncopathogenesis. Most FBXW7 substrates are proto-oncoproteins, including
c-JUN, cyclin E, c-MYC, MCL1, and NOTCH [9]. However, recent studies have identified novel
oncogenic FBXW7 mutations in human T-cell leukemia virus (HTLV-I) transformed adult T-cell
leukemia (ATL) cells, suggesting a possible carcinogenic role for FBXW7 [12]. Co-expression
of FBXW7 mutations D510E and D527G with either HTLV-I’s oncoprotein Tax, mutated
c-Myc (F138C) or mutated p53 (R276H) leads to transforming activity [12]. Moreover, this
activity promotes IL-2-independent growth of Tax-immortalized human T cells and increases
the formation of tumors in a xenograft mouse model of ATL [12]. These findings demonstrate
that FBXW7, which typically functions as a tumor suppressor, may also act as an oncogene
under certain circumstances. Therefore, the aim of this review is to provide an update on the
role of FBXW7 as a potential biomarker and therapeutic target for novel oncological treatments,
including GCs.

2. FBW7: Structure and Its Substrates

The FBXW7 gene is situated in chromosome 4q31.3 and contains 13 coding exons
and 4 untranslated introns. It encodes three distinct isoforms: FBXW7-α, FBXW7-β, and
FBXW7-γ, produced through alternative splicing of the same transcript. These isoforms are
localized predominantly in the nucleoplasm, cytoplasm, and nucleolus, respectively [8,11].
All of the isoforms share conserved domains at the C-terminal region and differ only in their
N-terminal region. Each isoform contains an F-box domain, a dimerization domain (DD),
and seven tandem WD40 repeats (Figure 1A). The F-box domain binds the Skp1 component
of the SCF complex, while the DD helps to bind the substrate [13]. The WD40 repeat forms
a propeller that recognizes the phosphorylated substrate via the conserved phosphorylated
domain, Cdc4 phosphodegron (CPD), which is phosphorylated by glycogen synthase
kinase 3 (GSK3) [14,15].

As already mentioned, FBXW7 is one of the main components of the SCF complex.
It helps in the recognition of substrates for ubiquitination and eventually proteasomal
degradation by the 26S proteasome [14] (Figure 1B). Under normal biological conditions,
FBXW7 ensures the maturation of bone marrow erythroid cells via the regulation of cy-
clin E expression [16]. It is also involved in the differentiation and proliferation of both stem
and progenitor cells [17]. FBXW7 has also been shown to be important for the pluripotency
of embryonic stem cells (ESCs) as it controls the stability of the c-Myc protein [14]. Above
all, FBXW7 is regarded as a strong p53-dependent tumor suppressor controlling human
cell growth, cell cycle progression and tumor development through the direction of various
oncoproteins such as Aurora A, cyclin E, c-Jun, c-Myb, c-Myc, JUNB, KLF5, Mcl1, MED13,
mammalian target of rapamycin (mTOR), NF1, NFκB2, Notch, NRF1, p63, SREBP, NONO,
and for ubiquitin-mediated proteolysis [18–25].
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Figure 1. FBXW7 isoforms and SCF-FBXW7 complex. (A) Three FBXW7 isoforms (α, β, and γ), which
are structurally different only at their N-terminal region, while sharing conserved domains in the
C-terminal region. Each of these isoforms consists of three domains: dimerization domain (DD),
F-box domain, and tandem WD40 repeats. (B) The SCF-FBXW7 complex in FBXW7 dimerization
format for substrate ubiquitylation.

FBXW7 can function both as a monomer or as a dimer. It is thought that this may
affect the selection of the target and binding strength. Dimerization of FBXW7 may also
play a crucial role in cancer cells where there is one copy of mutated FBXW7 allele. In
human cancers, FBXW7 is often inactivated via genetic and epigenetic mechanisms and
post-transcriptional modifications [1,8–11]. The loss of FBXW7 has been shown to be
also strongly associated with carcinogenesis, tumor metastasis, and resistance to chemo-,
radiation-, and immuno-therapies, leading to poorer outcomes [2,26].

3. Regulation of FBXW7

To date, the majority of studies focus on the discovery of the ubiquitin targets of
the FBXW7 ubiquitin ligase pathway. However, it is still unclear how FBXW7 itself is
regulated in different human cancers. To this end, emerging evidence has demonstrated
that numerous molecules such as CCAAT/enhancer-binding protein-δ (C/EBP-δ) [27],
p53 [28], EBP2 [29], Hairy and Enhancer-of-split homologues 5 (Hes-5) [30], Numb-4 [31],
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) [32], as well as microRNAs
(miRNAs) (Table 1) including miR-25 [33], miR-27a [34], miR-92a [35], miR-129-5p [36],
miR-182 [37], miR-223 [38], and miR-503 [37], have all been found to regulate the expression
of FBW7. In addition, several long noncoding RNAs (lncRNAs) inhibit miRNA activity by
acting as miRNA “sponges” (Table 1).
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Table 1. Non-coding RNA regulation of FBXW7 in cancer.

ncRNA Type Role Cancer Type Mechanism FBXW7
Expression Effect Sources Reference

miRNAs

miR-25 Oncogene NSCLC FBXW7 is a direct
target of miR-25 Downregulated

Promote cell
proliferation,

migration
and invasion

Tissue samples,
cell lines [33]

miR-27a Oncogene ALL
miR-27a controls
FBW7-dependent

cyclin E degradation
Downregulated

Increases DNA
replication stress

and alters cell
cycle progression

Tissue samples,
cell lines [34]

miR-92a Oncogene CC FBXW7 is a direct
target of miR-92a Downregulated

Promote cell
proliferation
and invasion

Tissue samples,
cell lines [35]

miR-182 and
miR-503 Oncogene Colorectal cancer

miR-182 and miR-503
cooperatively
target FBXW7

Downregulated Increases tumor
growth

Tissue samples,
xenograft

models, cell lines
[37]

miR-223 Oncogene T-ALL TAL1 targets FBXW7
through miR-223 Downregulated

Promotes cell
growth and

inhibits
apoptosis

T-ALL samples,
T-ALL cell lines [38]

lncRNAs

lnc-MIF Tumor
suppressor

Different cancer
types

lnc-MIF increases
FBXW7 expression by
acting as a molecular
sponge for miR-586

Upregulated
Inhibit aerobic
glycolysis and
tumorigenesis

Xenograft
models, cell lines [39]

lnc-MT1JP Tumor
suppressor GC

lnc-MT1JP regulated
FBXW7 expression
by competitively

binding to
miR-92a-3p

Upregulated

Inhibit cell
proliferation,

migration and
invasion

Tissue samples,
xenograft

models, cell lines
[40]

lnc-MALAT1 Tumor
suppressor Glioma

lnc-MALAT1
increases FBXW7

expression by
down-regulating

miR-155

Upregulated Inhibit cell
viability

Tissue samples,
cell line [41]

lnc-TINCR Tumor
suppressor Lung cancer

lnc-TINCR increases
FBXW7 expression
via its action as a
molecular sponge

for miR-544a

Upregulated

Inhibit cell
proliferation,

migration and
invasion

Tissue samples,
cell lines [42]

lnc-CASC2 Tumor
suppressor HCC

lnc-CASC2 increases
FBXW7 expression
via its action as a
molecular sponge

for miR-367

Upregulated Inhibit EMT Tissue samples,
cell lines [43]

Abbreviations. ncRNA: Non-coding RNA; NSCLC: non-small cell lung cancer; ALL: acute lymphoblastic leukemia;
CC: cervical cancer; T-ALL: T cell acute lymphoblastic leukemia; HCC: hepatocellular carcinoma; GC: gastric
cancer; and EMT: epithelial-mesenchymal transition.

The lncRNA c-MYC inhibitory factor (MIF) enhances the negative effect of miR-586 on
the abundance of FBXW7, leading to increased degradation of c-MYC [39]. Upregulation
of lncRNA-MIF transcription has been demonstrated to be induced by c-MYC, indicating a
feedback loop between lncRNA-MIF and c-MYC that finely controls the amount of c-MYC.
Moreover, other lncRNAs, including TINCR, CASC2, MALAT1, and MT1JP, have been re-
ported to function as miRNA sponges that can prevent miRNA-mediated inhibition of FBXW7
expression via miR-367, miR-544a, miR-155, and miR-92a-3p, respectively [40–43]. Figure 2
illustrates the upstream regulatory mechanisms and downstream substrates of FBXW7.
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Figure 2. Regulation of FBXW7 showing some of the upstream regulators of FBXW7 and its downstream
targets contributing to human tumorigenesis. Several proteins (p53, EBP2, Numb4, SGK1, Pin1, C/EBPδ,
HES-5, Presenilin, USP28*, ERK1/2, H-Ras, PI3K, PLK1/2, and SV40 Large T), miRNAs (miR-223,
miR-25, miR-27a, miR-182, miR-503, miR-129-5p, and miR-92a), and lncRNAs (MIF, MALAT1, TINCR,
CASC2, and MT1JP) regulate the expression of FBXW7. FBXW7 coordinates the ubiquitin-dependent
proteolysis of several key oncoproteins (AURKA, Cyclin E, c-Jun, c-Myc, c-Myb, mTOR, KLF5, Mcl-1,
NFkB2 SREBP, etc.).

4. Post-Translational Regulation of FBXW7

Post-translational modifications of FBXW7 involve its phosphorylation, autoubiquiti-
nation, deubiquitination, dimerization, and localization [44].

Phosphorylation. FBXW7 function is regulated by multiple kinases that catalyze its
phosphorylation [44,45]. The Thr205 phosphorylation of FBXW7α, leading to its ubiquity-
lation and proteasomal degradation, is directly mediated by extracellular signal-regulated
kinase (ERK) [46]. Additionally, Polo-like kinase 1 (PLK1) destabilizes FBXW7 by phos-
phorylation at Thr284 and Ser58 in FBXW7γ, which is equivalent to Thr402 and Ser176
in FBXW7α [47], and PLK2 destabilizes it by phosphorylating Ser176, and to some extent,
Ser25 and Ser349 in FBXW7α [48]. However, FBXW7α is stabilized by phosphorylation
at Ser227 by serum and glucocorticoid-regulated kinase 1 (SGK1) or phosphoinositide
3-kinase (PI3K), which inhibits autocatalytic ubiquitin transfer [49,50]. Moreover, Ser10
and Ser18 are phosphorylated in a protein kinase C–dependent manner within the isoform-
specific NH2-terminal region of FBXW7α, with phosphorylation at Ser10 shown to prevent
its nuclear localization [51].

Autoubiquitination. FBXW7’s regulation extends beyond its role in ubiquitination and
degradation, as it can also be subject to autoubiquitination. Peptidyl-prolyl cis-trans isomerase
NIMA interacting 1 (Pin1) decreases FBXW7 dimerization, promoting its destabilization
and self-ubiquitination [32]. Additionally, FBXW7 stability is influenced by SCF-dependent
mechanisms. One example is COP9 signalosome complex subunit 6, which is a member of
the COP9 signalosome complex, which enhances FBXW7 autoubiquitination and subsequent
proteasome-mediated degradation via the regulation of Cul1 neddylation [52].

Deubiquitination. USP28, a deubiquitinating enzyme, has been found to regulate
FBXW7 activity [45]. Remarkably, the removal of one copy of USP28 preserves stable
FBXW7 and promotes the degradation of its substrate [45]. Conversely, complete USP28
knockout leads to FBXW7 degradation, resulting in the accumulation of FBXW7 substrates,
while the overexpression of USP28 stabilizes both FBXW7 and its substrates. As a result,
both the absence and excess of USP28 contribute to Ras-driven oncogenic transformation.
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This dual control of FBXW7 activity by USP28 is believed to be a protective mechanism that
maintains healthy levels of proto-oncogenic FBXW7 substrates. However, this equilibrium
is disrupted by USP28 loss or overexpression [45].

Dimerization. FBXW7, through a conserved D domain, is capable of forming dimers.
However, mutations in endogenous FBXW7 have been demonstrated to prevent dimer for-
mation [53]. Dimerization aids in the ubiquitination of FBXW7 substrates with low-affinity
degrons but not those with high-affinity degrons, for example, cyclin E and Myc [13,53].
Additionally, Pin1-mediated isomerization and human FBXW7 phosphorylation at Ser205
increase its autoubiquitination by inhibiting dimerization [32].

Localization. The deviant localization of FBXW7 interferes with its association with
substrates. An example of this is evident in acute myelogenous leukemia, where nucle-
ophosmin mutations, necessary for the nucleolar localization of FBX7γ, lead to FBX7γ
instability, consequently increasing c-Myc expression [54]. Furthermore, phosphorylation
of FBXW7α at Ser10 hinders one of its nuclear localization signals [51].

5. Genetic and Epigenetic Alterations Cause FBXW7-Inactivation

FBXW7 inactivation, resulting from mutations, deletions, or epigenetic modifications,
is a major contributor to cancer progression and metastasis [55,56]. Monoallelic or biallelic
deletions or promoter hypermethylation of the FBXW7 gene are frequently observed in
various malignancies, such as breast, bladder, cervical, lung, esophagus, stomach, liver,
and pancreas cancer [57]. Missense mutations affecting the critical arginine residues in
the β-propeller’s phosphate-binding pockets are also common [58]. These mutants are
believed to act as dominant negative alleles and eventually cause functional inactivation of
the wild-type protein [57,58]. Although tumors typically express a functional wild-type
protein by retaining the second wild-type allele of FBXW7, in mouse models, monoallelic
deletions display a milder tumor phenotype than when there is complete gene loss [59,60].

FBXW7α has a broad tissue distribution and is ubiquitously expressed, as demon-
strated by numerous in vitro, in vivo, and clinical studies [1]. However, FBXW7β demon-
strates differential expression in diverse cell lines and tissues, with its promoter being
epigenetically regulated through histone and DNA modifications. In fact, up to 51% of
breast cancer tumors and 43% of other cancer cell lines have been found to have methy-
lated FBXW7β promoters [55]. The hypermethylation of the FBXW7 promoter is usually
associated with p53 mutations, which upregulate DNA methyltransferase 1 (DNMT1) and
suppress FBXW7 expression. Moreover, histone modifications play a crucial role in regulat-
ing FBXW7 expression. For example, EZH2, a histone methyltransferase, can silence FBXW7
by adding three methyl groups to the histone H3 residue, H3K27me3 [61]. Notch signaling
is another important regulator of FBXW7 expression. The upregulation of the Notch target
gene and Hes5 transcriptional repressor can suppress FBXW7 gene expression and lead to
a positive feedback loop which enhances the FBXW7 loss-of-function phenotype [62].

In the turnover of substrate, the effects of FBXW7 mutations are mainly context-dependent,
with the frequently tested FBXW7 substrate level remaining unaffected in other tissues of
FBXW7Mut/+ mice, except for TGIF1 and KLF5 [63]. FBXW7 mutation can also ameliorate
Apcmin-driven intestinal tumor growth. However, the adenomas arising in these mice still
possess normal levels of Jun, Myc, and Notch. Therefore, it is likely that heterozygous FBXW7
mutations can promote tumorigenesis by regulating “non-canonical” substrates, such as KLF5
and TGIF1 [58]. Given FBXW7′s critical role in maintaining physiological substrate levels,
understanding the mechanisms that control its activity is essential.

6. Deregulation of FBXW7 in Gynecologic Cancers

GCs, which include ovarian, uterine/endometrial, cervical, vaginal, and vulvar can-
cers, cause a huge worldwide health-socio-economic burden due to their high incidence
and mortality among women, irrespective of age [64,65]. Lack of screening, limited aware-
ness of specific symptoms, late diagnosis, or even misdiagnosis, combined with limited
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treatment options for advanced GCs, are the main contributing factors leading to the high
morbidity and mortality, thus stressing the need for further advances in the area of GC [65].

Being a tumor suppressor, FBXW7 is the gene which is most commonly mutated among
all the genes encoding F-box proteins in malignancies in humans [11,66]. In the meta-analyses
of the cBioPortal Database [56,67] that we have performed, we found an overall FBXW7 somatic
mutation rate of 13% in GCs (255 cases out of 1958 tested; Supplementary Table S1), although
different GCs were exhibiting different mutational spectra (Figure 3A). Most of the FBXW7
mutations are single nucleotide changes, leading to single amino acid substitutions within the
WD40 domains that are responsible for binding substrates. The mutations of these key residues
will prevent FBXW7 from binding with its oncogenic substrates. In Figure 3B, three mutation
hotspots, R465, R479, and R505, are shown. These represent up to 40.7% of mutations (110/270)
found in all FBXW7 mutations. Now we will proceed by describing the main types of GCs,
including some rare types, and the latest findings on the role of FBXW7 in these particular
tumors. The possible clinical significance of FBXW7 in GCs will also be outlined.
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6.1. FBXW7 in Ovarian Cancer

Ovarian cancer (OC) is a heterogeneous tumor with different pathophysiological de-
velopment and clinical management and outcome. OC accounts for 5% of all malignancies
in women [68]. Based on histopathological, immunohistochemical, and molecular genetic
analysis, ovarian carcinoma is classified into five types: high-grade serous (the commonest
type at 70%); clear cell (10%); endometrioid (10%); mucinous 3%; low-grade serous (<5%)
(WHO 2020), and even rarer, Brenner tumor [69,70]. Different epithelial malignancies
have different origins and morphologies with different biological behavior [71]. Mucinous
carcinoma arises from germ cells; low-grade serous carcinoma arises from the fallopian
tube; endometrioid, clear cell, and seromucinous carcinomas arise from the endometrium,
while malignant Brenner tumors develop from the transitional epithelium. The majority of
these carcinomas develop progressively from benign and borderline precursor lesions to
malignant tumors [71,72]. Most of these OCs tend to be genetically stable, with mutations in
different genes such as BRAF, CTNNB1, KRAS, and PTEN. However, in high-grade ovarian
serous carcinoma, there is a lot of genetic instability, which is characterized by the loss of
BRCA1-2 and TP53 mutations. It is a highly aggressive neoplasm, typically spreading to
the omentum and mesentery and accompanied by ascites [71,72]. To date, there is a lack of
effective clinical screening tools for OC, with approximately 70% of cases being diagnosed
at an advanced stage [73]. In the United States alone, around 21,000 new cases of OC are
diagnosed annually, with a mortality rate of 62% and a low five-year survival rate of only
20–30% [68]. Therefore, there is an urgent need for the introduction of highly sensitive and
specific diagnostic tools to identify OC at an earlier stage and the development of new
therapeutic approaches to improve the overall survival rates.

In OC, there is evidence of inactivation and functional loss of FBXW7, resulting
from complex genetic and epigenetic alterations such as deletion, somatic mutation, and
hypermethylation (Table 2) [74]. The frequency of the FBXW7 gene mutation is reported
to be approximately 2.5 ~ 8.3% [21,75]. Boyd et al. found that the FBXW7 and KIAA1462
genes were mutated in serous borderline tumor (SBT) of the ovary [76]. Ovarian SBT is
a unique histopathologic entity that is thought to be an intermediate between invasive
low-grade serous carcinoma and benign cystadenoma of the ovary. These findings suggest
that these mutations are novel candidates for the pathogenesis of ovarian SBT [76]. In
addition, low or absent FBXW7 expression was commonly present in 19q12 amplified/high
cyclin E1 cases of high-grade serous OC [77]. FBXW7 is significantly decreased in OC, and
this has been associated with the DNA methylation status of the 5′-upstream regions of
FBXW7 and p53 mutations [74].

The FBXW7 gene has been identified as a tumor suppressor in ovarian cancer (OC), as
reported in studies [74,78]. The expression of FBXW7 is especially important in high-grade
serous OC cells, as it plays a significant role in the sensitivity of these cells to anti-tubulin
chemotherapeutic drugs [79]. A study conducted by Xu et al. focused on the expression of
FBXW7 protein-coding transcript isoforms (α, β, and γ) in ovarian serous cystadenocarcinoma.
Their research showed that FBXW7γ acts as a tumor suppressor and might be the only FBXW7
transcript that is related to prognosis in this particular type of cancer [80].
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Table 2. Role of FBXW7 in ovarian cancer.

Study Source Mutation Type
and/or Expression Protein Change

Modulation of
FBXW7 and/or

Mechanism of Action
Effect Clinicopathological

Significance

Jardim et al. [21] Patients Missense R465H N.A. N.A.
Limited therapeutic

efficacy of
mTOR inhibitors

Sakai et al.
[75] FFPE tissues Missense R505G; R505L N.A. N.A. N.A.

Boyd et al.
[76] Tumor tissues Nonsense Q430X N.A. N.A.

FBXW7 and
KIAA1462 genes

are candidates for
a pathogenic
role in SBT

Aziz et al.
[77] Tumor tissues Low or absent

expression N.A. N.A. N.A.
High chromosomal
instability and poor

patient outcome

Kitade et al.
[74]

Tumor tissues;
cell line Downregulated N.A.

Mutated p53
suppresses

FBXW7 expression
N.A.

No significant
difference in overall

survival between
the high and the

low FBXW7
expression groups

Zhao et al.
[78] Cell line Downregulated N.A.

MAGEA1 promotes
NICD1 ubiquitination

and degradation by
promoting the

interaction between
FBXW7 and NICD1

Inhibits cell
proliferation and

migration
N.A.

Noack et al.
[79]

Cell lines; primary
cell cultures Downregulated N.A.

PLK1 inhibitor
BI6727/paclitaxel-co-

treatment
stabilizes FBXW7

Induces apoptosis N.A.

Xu et al.
[80]

TCGA data; cell
lines; xenograft
tumor model

Downregulated N.A.

FBXW7γ
overexpression
reduces protein

expression of c-Myc,
Notch1 and Yap1

Inhibits cell growth
in vitro and in vivo

FBXW7γ expression
is an independent
indicator of longer

disease-specific
survival and

progression-free
survival

Liu et al.
[81]

Tumor tissues;
cell lines Downregulated N.A.

Circ-BNC2
overexpression

upregulates FBXW7
via sponging
miR-223-3p

Inhibits cell
proliferation,

migration and
invasion

N.A.

Xu et al.
[82]

Tumor tissues; cell
lines; xenograft
tumor model

Downregulated N.A.

Ectopic FBW7 induces
proteasomal

degradation of
YTHDF2

Inhibits cell survival
and proliferation

in vitro and in vivo

High expression is
associated with

favorable prognosis

Miao et al.
[83]

Tumor tissues;
cell lines Downregulated N.A.

TTN-
AS1overexpression
upregulates FBXW7

via sponging
miR-15b-5p

Inhibits cell
proliferation, colony

formation and
promotes apoptosis

N.A.

Guo et al.
[84] Cell lines Downregulated N.A.

APS upregulates
FBXW7 by miR-27a
down-regulation.

Inhibits cell
proliferation,

migration, invasion
and promotes

apoptosis

N.A.

Abbreviations. N.A. not assessable; FFPE: formalin-fixed, paraffin-embedded; SBT: Serous borderline tumor;
TCGA: The Cancer Genome Atlas; and APS: Astragalus polysaccharide.

In both OC cell lines and tissues, Circ-BNC2 downregulation has been linked to a higher
FIGO stage and lymph node metastasis. On the other hand, overexpression of Circ-BNC2 led
to an upregulation of FBXW7 through sponging miR-223-3p, resulting in a reduced prolifera-
tion, migration, and invasion of OC cells [81]. Another study revealed that FBW7 also inhibits
the development of OC by targeting the N6-methyladenosine binding protein YTHDF2 [82].
In addition, Miao et al. found that Titin-antisense RNA1 (TTN-AS1) is downregulated in
both OC cells and tissues and has a positive correlation with FBXW7 expression. TTN-AS1
regulates FBXW7 expression by modulating miR-15b-5p, exerting a tumor-suppressive role
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in the development of OC. This suggests that the TTN-AS1/miR-15b-5p/FBXW7 axis could
serve as a potential therapeutic biomarker for OC [83]. Astragalus polysaccharide (APS), a
natural antioxidant present in Astragalus membranaceus, has been shown to suppress OC
cell growth in vitro via the miR-27a/FBXW7 axis. This highlights the therapeutic potential
of APS in OC treatment [84]. However, the exact role of FBW7 in OC progression remains
inadequately understood and requires further exploration.

6.2. FBXW7 in Cervical Cancer

According to research, cervical cancer (CC) is the second leading cause of tumor-
related death in women globally [85], with persistent infection of “high-risk” human
papillomaviruses (HPVs), particularly HPV16 and HPV18, being the primary cause [86,87].
Other risk factors that have been linked to CC include early sexual activity [88], multiple
sexual partners [89], infections such as HIV, herpes simplex virus type II and chlamydia [90],
genetic factors similar to active oncogenes such as ATAD2, PIK3CA, and CRNDE, and
tumor-suppressor genes such as RASSF1A, TP53, and NOL7 [91], and smoking [92]. Al-
though Papanicolaou smears and liquid-based cytology have been the traditional screening
methods for pre-invasive cervical disease [93], primary HPV screening is now being priori-
tized. Despite improvements in screening, detection, and treatment methods, including
surgery, radiotherapy, and chemotherapy, early lymph node metastasis can still result in a
poor prognosis for CC patients, with a five-year survival rate of approximately 40% [94,95].
More research is needed to identify potential molecular therapeutic targets that could
improve the management of patients with advanced or recurrent CC.

Studies have shown that the FBXW7 gene plays a role in CC (Table 3). The mutation
frequency of the FBXW7 gene is approximately 1.5% to 15% [96–102], with some mutations,
such as R465C, R479Q, and R505G, also observed [103]. Alterations in FBXW7 and PIK3CA
are believed to be the earliest changes that trigger malignant progression [104]. Five
non-synonymous mutant genes, including FBXW7, were found in metastatic relapse signif-
icantly mutated (MSG) genes among MRCC samples [105]. Patients with any detectable
MSG mutations had shorter progression-free and overall survival times than those without
detectable MSG mutations [105]. Furthermore, the immune subtype of cervical squamous
cell carcinoma (CSCC) HPV16-IMM, which has mesenchymal features and a strong im-
mune response, had significant mutations at FBXW7 and epigenetic silencing [106]. Two
FBXW7 mutations, R479P and L443H, were found to promote cell proliferation, migration,
and invasion in CC cells in a study involving 145 CSCCs [107]. In another study using
TCGA-CESC and GSE44001 datasets, 218 out of 291 patients (74.91%) with oxidative stress-
related gene mutations were investigated, with FBXW7 mutations accounting for 12% of
them [108]. A five oxidative stress-related gene signature was created to predict overall
survival, and three subgroups based on genes linked to oxidative stress were generated
to guide individualized therapy for CSCC patients. Preclinical evidence suggests that
oxidative stress-related subtypes and Risk Score may be useful for the precisely tailored
treatment of CSCC patients [108].
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Table 3. Role of FBXW7 in cervical cancer.

Study Source Mutation Type
and/or Expression Protein Change

Modulation of
FBXW7 and/or

Mechanism of Action
Effect Clinicopathologic

Significance

Spaans et al.
[96]

FFPE tissues;
Tumor tissues Missense R465C; R465H N.A. N.A. N.A.

Ojesina et al.
[97] Tumor tissues Missense (R465C; R465H; R479P;

R505G; R543T) * N.A. N.A. N.A.

Spaans et al.
[98] FFPE tissues Missense R465C; R465H;

R479L; R479Q N.A. N.A. N.A.

Luo et al.
[99]

GEO and TCGA
data CNA N.A. N.A. N.A. N.A.

Huang et al.
[100] Patients Different types of

genetic alterations N.A. N.A. N.A. N.A.

Kuno et al.
[101] TCGA datasets Different types of

genetic alterations N.A. N.A. N.A.

Genomic alterations in
FBXW7 were not

significantly correlated
with progression

free survival

Kashofer et al.
[102]

Micro-dissected
samples Missense D399N; R465H;

R479Q; R505G N.A. N.A. N.A.

Muller et al.
[103] Tumor tissues Missense R465C; R479Q; R505G N.A. N.A. N.A.

Li et al.
[104] Tumor tissues Missense R465C; R465H; R505G N.A. N.A. N.A.

Tian et al.
[105] Blood samples Non-synonymous * N.A. N.A.

MRCC patients with
any detectable MSG

mutations had
significantly shorter
progression free and
overall survival than

those without
detectable MSG

mutations

Lu et al.
[106]

Several TCGA
datasets

Mutation and
epigenetic silencing N.A. N.A. N.A.

Genomic and
epigenetic alterations in
FBXW7 are exhibited in

immune subtype of
CSCC HPV16-IMM

Liu et al.
[107]

Tumor tissues;
cell lines Missense L443H; R479P N.A.

Both of these
mutations

promote cell
proliferation,

migration, and
invasion

N.A.

Wang et al.
[108]

TCGA-CESC and
GSE44001 datasets

Different types of
genetic alterations N.A. N.A.

Aberration in
several

pathways

Prognostic model based
on oxidative

stress-related genes

Zhou et al.
[35]

Tumor tissues;
cell lines Downregulated N.A.

miR-92a
down-regulation

upregulated FBXW7

Inhibits cell
proliferation and

invasion
N.A.

Xu et al.
[109] Tumor tissues Downregulated N.A. N.A. N.A.

Loss of FBXW7 is
related to poor

prognosis

Zhang et al.
[110]

TCGA data;
Tumor tissues;

cell lines
Downregulated N.A.

LINC00173
overexpression

upregulated FBXW7
via sponging
miR-182-5p

Inhibits cell
proliferation and

invasion
N.A.

Ben et al.
[111]

Tumor tissues;
cell lines Downregulated N.A.

miR-27a-3p
down-regulation

upregulated FBXW7

Inhibits cell
proliferation,

colony
formation and

promotes
apoptosis

N.A.

Ren et al.
[112]

GSE55940 data;
cell lines Downregulated N.A.

miR-103a-3p
down-regulation

upregulated FBXW7

Reduces
viability by

inducing
apoptosis

N.A.

Abbreviations. FFPE: formalin-fixed, paraffin-embedded; N.A. not assessable; CNA: copy number alteration; TCGA:
The Cancer Genome Atlas; CSCC: Cervical squamous cell carcinoma; MRCC: metastatic relapsed cervical cancer; and
MSG: metastatic relapse significantly mutated. * Please see the cited article, for a complete list of mutations.
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In CC, miR-92a is significantly upregulated and binds to the 3′UTR of FBXW7, inhibit-
ing its expression and promoting tumor progression and invasion [35]. Xu et al. found that
low FBXW7 expression was associated with high histologic grade, lymphovascular space
invasion, and metastasis, and patients with low FBXW7 expression had poor progression-
free and overall survival [109]. Downregulation of the long intergenic nonprotein-coding
RNA 173 (LINC00173) in CC tissues is correlated with poor survival, and LINC00173 over-
expression increases FBXW7 levels by regulating miR-182-5p, suppressing the proliferation
and invasion of CC cells [110]. Additionally, miR-27a-3p and miR-103a-3p have also been
implicated in CC development and progression. miR-27a-3p targets FBXW7, leading to its
downregulation and promoting tumor growth [111]. miR-103a-3p is significantly upregu-
lated in CC tissues and correlates with more aggressive histological grades, higher FIGO
stage, and distant metastasis, leading to poor overall survival. miR-103a-3p also targets
FBXW7, suggesting that it functions as an oncogene in CC by inhibiting FBXW7 [112].
These findings highlight the important role of FBXW7 in inhibiting CC development and
progression and the potential therapeutic significance of targeting the miRNA-FBXW7 axis.

6.3. FBXW7 in Endometrial Cancer

Endometrial cancer (EC) is the most frequently diagnosed GC in developed countries [113].
Risk factors include hyperestrogenism due to early menarche, obesity, nulliparity, and late
menopause. Advanced age, diabetes mellitus, Lynch syndrome, breast cancer, tamoxifen
therapy, and radiotherapy have also been associated with EC [114]. Gene mutations are being
used for EC classification [115]. EC can be divided into endometrioid (Type I), which occurs in
around 80% of patients, and non-endometrioid (Type II) in the rest [116,117]. Non-endometrioid
ECs include endometrial serous carcinoma, clear-cell carcinoma, and carcinosarcoma. Type 1
ECs have alterations in several different genes, including CTNNB1, KRAS, PTEN, and DNA
characterized by microsatellite instability (MSI) [118,119]. In contrast, Type 2 EC tumors are
defined as having TP53 mutations, increased CDH1 expression, amplification of HER2, and a
high Ki-67 (MIB1) score, which is a marker of proliferation. The standard treatment is surgical,
involving total hysterectomy and bilateral salpingo-oophorectomy, which is typically effective in
the case of stage I disease [120]. However, when EC is advanced, surgery needs to be followed
by radio- and/or chemotherapy. Despite advances in management for EC, survival rates have
not improved significantly. Thus, improving the ability of identifying the risk factors and
formulating novel management plans are essential for improving the prognosis and survival
rate of patients with EC [121].

FBXW7 has been shown to be mutated in EC (Table 4). Most FBXW7 mutations are
localized to the substrate-binding WD-repeats [122]. FBXW7 mutation status also correlates
with tumor grade, EC type, and lymph node status [123]. Targetable FBXW7 mutations (6%)
have also been frequently found in EC [124]. Numerous other studies have reported that
FBXW7 mutated with a frequency of approximately 5~30% in ECs [96,125–131]. Moreover, re-
currences primarily align with CIP2A overexpression and PPP2R1A or FBXW7 mutation [132].
Computational analysis shows a significant deviation in structural configuration and stability
of FBXW7 mutants R465C, R465H, R465P, R505C, R505G, R505L, and R505S structures. The
protein–protein interaction network of FBXW7 consists of hub proteins such as c-Myc, CCNE1,
CUL1, KLG5, NFKB2, NOTCH1, SKP1, SREB1, and STYX. Thus, alteration in the FBXW7
leads to aberration in their signaling pathways [133].

In the case of serous EC, higher levels of nuclear FBXW7 and cytoplasmic Protein
Phosphatase 2 A, Scaffold Subunit Abeta (PPP2R1B) were associated with a decreased risk
of progression [134]. In vitro effects of FBXW7 mutation in serous EC have been shown
to increase the sensitivity to SI-2 and dinaciclibraise and raise the levels of potentially
druggable proteins [135]. Novel insight into proteomic changes associated with FBXW7
mutation in serous ECs include the identification of PADI2 as a potential therapeutic
target for these tumors [136]. FBXW7 mutations have been shown to affect the levels
of two druggable proteins: L1 cell adhesion molecule (L1CAM) and transglutaminase 2
(TGM2) [137]. Interestingly, Lehrer and Rheinstein concur with Urick et al. [137] in that
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L1CAM may be a promising druggable target in EC but did not show any relationship
between TGM2 expression, FBXW7 mutations and EC survival. This suggests that, when
compared to L1CAM, TGM2 might not be of as much value as a druggable target [138].
Further studies involving FBXW7, L1CAM, and TGM2 in ECs are needed [139,140].

Table 4. Role of FBXW7 in endometrial cancer.

Study Source Mutation Type
and/or Expression Protein Change

Modulation of
FBXW7 and/or

Mechanism of Action
Effect Clinicopathologic

Significance

Le Gallo et al.
[122] Tumor tissues Missense

(R465C; R465H;
R479Q; R505C;

Y545C) *
N.A. N.A.

Loss of FBXW7
function may be
correlated with

resistance to
antitubulin

chemotherapy and
sensitivity to an
HDAC inhibitor

Garcia-Dios et al.
[123]

Five datasets;
FFPE tissues;

Tumor tissues
Missense

(R465C; R465H;
R479G; R479L;

R479Q) *
N.A. N.A.

FBXW7 mutants
correlated with a
positive lymph

node status

Stelloo et al.
[124] Tumor tissues Missense R465C; R465H N.A. N.A.

Somatic mutations
in FBXW7 can
potentially be

targetable with
HDAC inhibitors

Spaans et al.
[96]

FFPE tissues;
Tumor tissues Missense R465C; R465H;

R505C N.A. N.A. N.A.

DeLair et al.
[125]

TCGA data;
FFPE tissues

Different types of
genetic alterations * N.A. N.A. N.A.

Cuevas et al.
[126]

TCGA data;
Tumor tissues Missense R505C; R505G N.A. N.A. N.A.

Lupini et al.
[127] Tumor tissues Missense R361Q N.A. N.A. N.A.

Bosquet et al.
[128]

TCGA data;
cell lines

Different types of
genetic alterations N.A. N.A. N.A.

Integration of
CCNA2 and E2F1

overexpression and
PPP2R1A, POLE,

and FBXW7
mutations

generated a
molecular EC

classification which
projects prognostic

risk, platinum
insensitivity and

potential targetable
therapeutic options

Feng et al.
[129]

CLISING and
cBioportal database;

tumor tissues;
blood samples

Different types of
genetic alterations * N.A. N.A.

TP53, PIK3CA,
PTEN, PIK3R1, and
FBXW7 mutations
were not related to

FIGO stage or
recurrence.
However,

personalized
ctDNA detection for

one-to-three
high-frequent

mutations, was
useful in

monitoring
high-risk EC relapse

during
post-operative
follow-up as a

prognostic marker

Ross et al.
[130] Tumor tissues Different types of

genetic alterations N.A. N.A. N.A. N.A.



Cells 2023, 12, 1415 14 of 27

Table 4. Cont.

Study Source Mutation Type
and/or Expression Protein Change

Modulation of
FBXW7 and/or
Mechanism of

Action

Effect Clinicopathologic
Significance

Lin et al.
[131]

TCGA data;
Tumor tissues

Different types of
genetic alterations N.A. N.A. N.A. N.A.

Gonzalez-Bosquet
et al.
[132]

TCGA data Different types of
genetic alterations N.A. N.A. N.A.

CIP2A
overexpression or
PPP2R1A-mut or
FBXW7-mut or a
combination of

these aberrations
was negatively
associated with
progression free

survival

Vasuki and Christy
[133] TCGA data Missense

(R465H; R465P;
R505C; R505G;

R505L) *

Interaction with
NOTCH1, c-Myc,

CCNE1, STYX, KLG5,
SREB1, NFKB2, SKP1

and CUL1

Aberration in their
signalling pathways N.A.

Dinoi et al.
[134]

TCGA data;
Tumor tissues N.A. N.A. N.A. N.A.

Higher nuclear
FBXW7 and
cytoplasmic

PPP2R1B levels
were associated
with a decreased

risk of progression

Urick et al.
[135] Cell lines Missense

(G423V; R465C;
R465H; R479Q;

R505C) *

FBXW7 mutations
lead to increased
Cyclin E1, SRC-3,

c-MYC, Rictor, GSK3,
P70S6 kinase and

AKT phosphorylated
protein levels

FBXW7-mutant
cells exhibit

increased sensitivity
to SI-2 and
dinaciclib

N.A.

Urick et al.
[136] Cell lines Missense R465C, R479Q;

R505C

FBXW7 mutation
(R505C) leads to
increased PADI2

expression

N.A. N.A.

Urick et al. [137] Cell lines Missense R465C, R479Q;
R505C

FBXW7 mutations
increased L1CAM
and TGM2 protein

levels

N.A. N.A.

Lehrer and
Rheinstein

[138]
TCGA data Different types of

genetic alterations N.A.

FBXW7 mutations
affect gene

expression of
L1CAM but are

unrelated to TGM2
gene expression

N.A.
FBXW7 mutations

are unrelated to
survival

Liu et al.
[141]

Tumor tissues;
cell lines Downregulated N.A.

STYX suppresses
FBXW7 expression

via direct
protein–protein

interaction

Over-expression of
FBXW7 inhibits cell

proliferation and
promotes apoptosis

N.A.

Abbreviations. N.A. not assessable; FFPE: formalin-fixed, paraffin-embedded; CNA: copy number alteration;
N.D. not determined; TCGA: The Cancer Genome Atlas; HDAC; Histone deacetylase; SRC-3; steroid receptor
coactivator 3; GSK3; glycogen synthase kinase 3; PADI2: peptidyl arginine deiminase 2; and ctDNA; circulating
tumor DNA. * Please see the cited article, for a complete list of mutations.

In EC tissues, Liu et al. found that FBXW7 is downregulated, while STYX is upregu-
lated. In addition, STYX interacted with FBXW7 and then downregulated its expression in
EC. Over-expression of FBXW7 can also inhibit cell proliferation and facilitate apoptosis in
EC cells. Moreover, FBXW7 can suppress the expression of Notch-mTOR pathway-related
proteins. Collectively, STYX/FBXW7 axis has been shown to participate in the development
of EC via Notch-mTOR signaling pathway [141].

6.4. FBXW7 in Rare Gynecological Cancers

FBXW7 has also been shown to be mutated in uterine carcinosarcoma (UCS) and
vulvar cancer (Table 5), both of which are rare gynecological malignancies.
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UCS accounts for less than 5% of uterine cancers [142]. It is a metaplastic carcinoma
which has both sarcomatous and carcinomatous components. The sarcomatous component
resembles homologous histologic components, which are typically found in the uterus, or
else harbor heterologous components that are not normally present in the uterus, such as
rhabdomyosarcomatous or chondrosarcomatous differentiation, and this, by definition,
makes it high-grade. The carcinomatous (epithelial) component is also high-grade and
typically shows endometrioid or serous differentiation [143]. UCS shares mutational
features such as somatic TP53 mutations and extensive copy number alterations, which are
more similar to serous uterine carcinoma rather than endometrioid.

According to the conversion theory, UCSs are thought to have a monoclonal origin,
where carcinomatous subclones can undergo metaplastic differentiation and transform into
sarcomatous cells later on [144]. This theory is backed by the fact that there is the co-expression
of cytokeratins and epithelial membrane antigens in carcinomatous and sarcomatous cells,
together with a concordance of TP53 and KRAS mutations, identical patterns of X chromosome
inactivation, and similar loss of heterozygosity between the carcinomatous and sarcomatous
components. Other frequent mutations have been detected in PPP2R1A, PIK3CA, and PTEN,
similar to endometrioid and serous uterine carcinomas [144]. The 5-year survival rate is
33–39% [144]. In the case of metastasis, adjuvant treatment largely includes the use of
paclitaxel and carboplatin. However, to date, in the case of UCS, there is no trial which has
shown an overall survival benefit from adjuvant chemotherapy or radiotherapy [145,146].

Table 5. Role of FBXW7 in rare gynecological cancers.

Study Cancer Type Source Mutation Type and/or Expression Protein Change

Hembree et al.
[147] UCS COSMIC and TCGA

data from patients Missense; nonsense R465H; R658X

McConechy et al.
[148] UCS FFPE tissues;

tumor tissues Missense R385C; R387L; R425L;
R465C; R505L) *

Le Gallo et al.
[149] UCS Tumor tissues Missense

(G437V; R465H;
R465L; R479Q;

Y545C) *

Crane et al.
[150] UCS Tumor tissues Different types of genetic alterations N.A.

Moukarzel et al.
[151] UCS

TCGA data;
FFPE tissues;
tumor tissues

Missense R465C

Ashley et al.
[152] UCS TCGA data Missense G423V

Cherniack et al.
[144] UCS TCGA data; tumor

tissues Missense
(G423V; R465H;
R479Q; R689W;

S558F) *

Cuevas et al.
[153] UCS TCGA data; mice

models; cell lines Different types of genetic alterations *

Palisoul et al.
[154] Vulvar Database; patients Frameshift E471fs

Han et al.
[155] Vulvar

COSMIC and TCGA
data; FFPE tissues;

tumor tissues
Missense R399Q ; R463G

Zięba et al.
[156] Vulvar

FFPE tissues;
tumor tissues;

cell lines
Missense S462Y, R479G, T482A,

R505C, R505G

Abbreviations. UCS: Uterine carcinosarcoma; N.A. not assessable; FFPE: formalin-fixed, paraffin-embedded;
TCGA: The Cancer Genome Atlas; and COSMIC: Catalogue of Somatic Mutations in Cancer. * Please see the cited
article, for a complete list of mutations.
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Mutations in ARID1A, FBXW7, KMT2C, PIK3CA, KRAS, PTEN, and TP53 play an
important role in UCS [148]. However, there are some differences in mutation frequencies,
thus reflecting the pathological heterogeneity of UCS. The numerous potential driver genes
suggest that this is a genetically heterogeneous disease [147]. Several studies have reported
that FBXW7 is frequently mutated in uterine carcinosarcoma (UCS) with a prevalence
of over 18% [148–152]. An integrated genomic and proteomic analysis of 57 UCSs has
revealed alterations in canonical pathways, particularly in the PI3K pathway, with more
than 75% of cases exhibiting a mutation in FBXW7, loss of RB1, or amplification of CCNE1,
indicating cell cycle dysregulation [144]. TP53 mutations are commonly acquired in most
tumors, indicating that FBXW7, p53, and PI3K pathways play critical roles in UCS, with
FBXW7 being a key driver of this specific cancer. Formal genetic evidence from lineage
tracing studies suggests that UCS originates from endometrial epithelial cells that undergo
an epithelial-mesenchymal transition, leading to a highly invasive phenotype specifically
driven by FBXW7 [153].

Vulvar cancer, another rare form of gynecological cancer, has a peak incidence around
the age of 80 years but is increasingly being diagnosed at a median age in the fifth
decade [157]. Nearly 30% of vulvar cancer cases are diagnosed at FIGO stage III or IV, with
a 5-year overall survival of 43% and 13%, respectively [158]. The standard treatment for
vulvar cancer is radical surgery with adjuvant radiotherapy in selected cases. To target the
most effective treatment while minimizing unnecessary interventions, especially in elderly
patients, pathological and clinical prognostic factors are constantly being explored.

Squamous cell carcinoma (SCC) accounts for 80–90% of vulvar carcinomas and is
known for its clinical and pathological heterogeneity. Around 43–60% of vulvar SCC are
thought to be caused by HPV, leading to the inactivation of TP53 and retinoblastoma (Rb) by
E6 and E7 oncoproteins, respectively [159]. These tumors are often associated with diffuse
p16 expression [160,161]. The remaining vulvar SCCs are considered “HPV-independent”
and tend to occur in older women and are associated with chronic inflammation such
as lichen sclerosis [160]. TP53 somatic mutations, PTEN mutation, and EGFR activation
have been observed in HPV-independent SCC [159]. Given the rarity and heterogeneity
of vulvar SCC, the understanding of the disease’s pathogenesis is limited, and there is
a lack of knowledge about targetable molecular pathways. Variants in several genes,
including FBXW7 (4%), have been identified in a vulvar cancer cohort using targeted
hot-spot sequencing, along with specific protein changes for targetable genes [154]. Thus,
molecularly guided precision medicine could offer alternative, targeted treatment options
for vulvar cancer patients [154]. In HPV (+) SCCs, novel mutations in BRCA2, FBXW7, and
PIK3CA were discovered by Han et al., which had not been previously reported in vulvar
SCCs [155]. While HPV (−) SCCs exhibited more nonsilent and driver mutations than
HPV (+) SCCs, there was no distinction between HPV (+) and HPV (−) SCCs in terms of
CNA loads and mutation signatures. SCCs of vulvar with HPV (+) and HPV (−) may have
different mutation and CNA profiles but share common genomic features [155]. Similarly,
when screening hrHPV(+) and hrHPV(−) vulvar tumors, CDKN2A and TP53 had common
mutations (25% and 21% in hrHPV(+), 46% and 41% in hrHPV(−) cases, respectively) [156].
Other mutations that were identified, although at low frequencies, included FBXW7, AKT1,
FLT3, FGFR3, GNAQ, HRAS, JAK3, PIK3CA, PTEN, STK11, and SMAD4. The majority
of these mutations could activate the PI3K/AKT/mTOR pathway. Despite being initiated
from different premalignant lesions, the genetic mechanisms of the two routes of vulvar
SCC pathogenesis may be similar [156].

Overall, these studies suggest that FBXW7 could play a potential role as a prognos-
tic marker and serve as a tumor suppressor for the development of novel and effective
therapies for GC patients.

7. Potential Therapeutic Strategies Targeting FBXW7

FBXW7 is a protein that plays a critical role in the degradation of specific oncoproteins
that promote oncogenesis through the activation of signaling pathways. Reduced FBXW7
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expression leads to an accumulation of these oncoproteins and is associated with tumor
growth. Strategies that target cancers with FBXW7 loss of function can include the reac-
tivation of FBXW7 expression in tumors with wild-type FBXW7, which may have been
inactivated through epigenetic mechanisms, or targeting downstream effectors of FBXW7
inactivation in tumors with gene mutations or deletions [8].

Overexpression of wild-type FBXW7 may reverse drug resistance resulting from
FBXW7 loss, and studies have demonstrated the significance of FBXW7 promoter hyper-
methylation in carcinogenesis [55,162,163]. Decitabine, a DNA methyltransferase inhibitor,
has been used to inhibit DNA methylation and promote FBXW7 expression while reducing
the expression of the oncoprotein MCL-1 in lung cancer cells [164]. Venetoclax, a Bcl-2
inhibitor, when combined with decitabine, resulted in a strong toxic effect against lung
cancer cells [164]. In NSCLC cells with loss of FBXW7, treatment with Entinostat, a class 1
HDAC inhibitor, effectively overcame Taxol resistance and may be beneficial in treating
aggressive Taxol-resistant NSCLCs and hematological cancer cells that lack expression of
FBXW7 [165–167]. However, a disadvantage of these therapies is that they have a global
impact on cellular gene expression, which may include repressed oncogenes and other
hypermethylated genes when DNA methyltransferase drugs are used [8]. One potential
method to restore FBXW7 expression in tumor cells with wild-type FBXW7 mRNA is to
target FBXW7-miRNAs. Several promising in vitro and in vivo approaches have been
shown, such as small molecule inhibitors of miRNAs (SMIR) or LNA-antimiRs that can
disrupt miRNA-target interactions. However, there may be unintended adverse effects of
miRNAs since each miRNA can target multiple genes [8].

Low levels of FBXW7 protein can result from the hyperactivation of ERK1/2 signaling
or PLK1 or Pin1. Therefore, inhibitors for these pathways can restore FBXW7 expression
and/or induce cell cycle arrest or apoptosis. Currently, clinical trials are testing the PLK1
inhibitor onvansertib and the Pin1 inhibitor sulfopin [168,169].

An mTOR inhibitor can reverse the oncogenic effect of an FBXW7 mutation when
FBXW7 is inactivated [170]. Downregulation of GSK3β reduces c-Myc T58 phosphorylation,
which inhibits FBXW7-mediated c-Myc degradation. This leads to c-Myc accumulation,
increasing TRAILR5-induced apoptosis both in vitro and in vivo [171]. This can be used
to target cells that overexpress c-Myc in FBXW7-deficient cell lines. Vorinostat, a histone
deacetylase (HDAC) inhibitor, induces apoptosis through the upregulation of pro-apoptotic
proteins Bim and Noxa and the downregulation of Mcl-1 [49]. FBXW7 mutation in squa-
mous cell carcinoma (SCC) increases the expression of Bim and Mcl-1, leading to resistance
to standard chemotherapy while increasing susceptibility to HDAC inhibitors [172]. There-
fore, the combination of HDAC inhibitors with BH3-mimetic ABT-737 induces strong
synergistic cancer cell death [172]. Research has demonstrated that FBXW7 can inhibit
metastasis [173]. In particular, when FBXW7 is knocked out in bone marrow-derived
stromal cells of mice, Notch expression increases and leads to an elevation in the ex-
pression of C-C motif chemokine ligand 2 (CCL2) [174]. Elevated CCL2 levels attract
macrophages and monocytic myeloid-derived suppressor cells to the tumor site, which
can facilitate metastasis [173]. However, the depletion of FBXW7 can be reversed using a
CCL2 receptor antagonist, which presents a promising therapeutic strategy for targeting
FBXW7-deficient cells [174].

Interestingly, FBXW7 plays a crucial role in maintaining stem cells in various tissues,
including cancer stem cells (CSCs), which are a small subset of tumor cells with the ability
to initiate tumors, and promote tumor spread, recurrence, and chemoresistance [173]. When
FBXW7 is ablated in the mouse model of chronic myeloid leukemia, CSCs enter the cell
cycle due to the accumulation of c-MYC [175,176]. Consequently, loss of FBXW7 increases
the sensitivity of CSCs to conventional treatment with the tyrosine kinase inhibitor imatinib
or cytarabine. The combination of FBXW7 ablation and treatment with these drugs has
been shown to eliminate CSCs and decrease the rate of relapse in the murine model [175].
FBXW7 expression was found to be upregulated when treating LGR5+ CSC-enriched cell
lines of human CRC with oxaliplatin or irinotecan but not in other non-stem-like cell



Cells 2023, 12, 1415 18 of 27

lines [177]. Depletion of FBXW7 in the LGR5+ CSC-enriched cells led to an accumulation
of c-MYC and increased cell sensitivity to chemotherapy.

Despite the growing understanding of the regulation and function of FBXW7 in both
normal and tumoral cells, several questions remain unanswered. For instance, mutated
forms of FBXW7 may have carcinogenic effects, which could present an opportunity to
develop targeted therapies. However, certain specific mutations may differentially degrade
several FBXW7 targets, unlike the hot spot arginine mutations (R465, R479, and R505) [8].
Understanding the conformational changes that underlie these phenotypes could help
design small inhibitors that selectively affect specific downstream signaling pathways
and/or alter FBXW7 substrate selection. It is also essential to investigate the contribution
of FBXW7 monomers and dimers in homozygous or heterozygous mutations since FBXW7
mutations are typically heterozygotic [11]. Therefore, the effects of targeting FBXW7 on
cancer outcomes are complex. While the elimination of FBXW7 can promote the cell
cycle and inhibit apoptosis in cycling cancer cells, it can also be effective in eliminating
CSCs. Developing chemical inhibitors of FBXW7 and testing their effects, whether in
combination with conventional chemotherapy or alone, should help uncover the potential
of FBXW7-targeted therapy for cancer management [9].

Gynecologic cancers (GCs) are a diverse set of tumor types with a unique pattern of
alterations. Therefore, there is a pressing need to consider changing the design of clinical
trials to include all gynecologic oncology patients in biomarker-based, basket-type clinical
trials. Despite multiple clinical trials targeting FBXW7-related signaling pathways, only a
handful of them include GCs (Table 6) [21,168,169,178–180].

Table 6. Summary of some clinical trials targeting FBXW7-related signaling pathways.

Compound Phase Malignancy Target Trial Registration Reference

Sirolimus, HCQ

I

Bladder and Colorectal cancers

mTOR

Clinical Trials Program
at Department of

Investigational Cancer
Therapeutics,

University of Texas MD
Anderson Cancer

Center

[21]

Everolimus, pazopanib Colorectal cancer

Everolimus, anakinra Colorectal cancer

Sirolimus, vorinostat HCC

Temsirolimus,
bevacizumab,
valproic acid

Colorectal cancer

Sirolimus, lapatinib Mesothelioma

Everolimus,
Anastrozole Ovarian cancer

Onvansertib in
combination with either

LDAC or decitabine
Ib AML PLK1 NCT03303339 [168]

Sulfopin Pre-clinical
Neuroblastoma and pancreatic

mouse model, and neuroblastoma
zebrafish model

PIN 1 [169]

Simeprevir + pegylated
interferon-α + ribavirin II/III Chronic hepatitis C virus Target FBXW7-miRNAs NCT01349465 [178]

MLN8237/Alisertib I/II/III

Relapsed/Refractory
peripheral T-cell

lymphoma, non-Hodgkin
lymphoma, advanced-non

hematological malignancies,
lung, breast,

head and neck, gastroesophageal
malignancies, and advanced or

metastatic sarcoma

AURKA

NCT01482962
NCT00807495
NCT01045421
NCT01653028

[179]

BI6727 (Volasertib) II Ovarian cancer PLK1 NCT01121406 [179]

Danusertib
(PHA-739358) I Bcr-Abl-associated advanced

hematologic malignancies AURKA
European Clinical Trails

Data Base (EudraCT
number 2007-004070-18)

[180]

Abbreviations. HCC: hepatocellular carcinoma; AML: acute myeloid leukemia; LDAC: Low Dose Cytarabine.
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8. Conclusions

FBXW7 is a crucial component of the SCF ubiquitin ligase complex and acts as a
tumor suppressor by regulating the abundance of various oncogenic proteins. In GC
and other cancers, FBXW7 is frequently mutated and is associated with resistance to
treatment and poor prognosis. Therefore, the detection of FBXW7 mutation status can be
a valuable diagnostic biomarker and plays a critical role in personalized therapy. Since
FBXW7 mutations are mostly heterozygotic, it is essential to understand the effects of
monomeric and dimeric forms of FBXW7 on mutational status to further comprehend its
function. Comprehensive studies are necessary to investigate the complex network of
FBXW7, its substrates, and regulators, which will provide a better understanding of GC
pathogenesis and possibly discover novel targets for effective treatment. Targeted therapies
for tumor cells with FBXW7 mutations may offer individualized treatment options. Future
studies will determine whether targeting FBXW7 alone or in combination with downstream
or parallel pathways is more beneficial. Complete ablation of FBXW7 expression can
desensitize cancer cells and prevent cancer cell death, indicating that some FBXW7 activity
is required for effective anti-cancer therapy. Indirect targeting of FBXW7 may decrease
drug resistance, enabling current drug therapies to work more efficiently.

9. Future Directions

In the future, studies can focus on restoring the functions of FBXW7 by taking advan-
tage of the fact that most tumor cells contain both wild-type and mutated copies, making
them heterozygous. As mutated FBXW7 has a dominant negative effect, selective screening
and design of small molecules that can interact with the mutation and disrupt dimerization
may help to sequester the mutated FBXW7 and free up the wild-type protein to act as a
tumor suppressor. Such an approach can have a positive impact on the development of
personalized, precise treatments for patients with GCs.
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Abbreviations

ATL adult T-cell leukemia
C/EBP-δ CCAAT/enhancer-binding protein-δ
CC cervical cancer
CSC cancer stem cell
DNMTs DNA methyltransferases
EC endometrial cancer
ERK Extracellular signal–regulated kinase
EZH2 Enhancer of zeste homolog 2 polycomb repressive complex 2
FBXW7 F-Box and WD Repeat Domain Containing 7
GC gynecologic cancer
GSK3 glycogen synthase kinase 3
HDAC histone deacetylase
Hes-5 Hairy and Enhancer-of-split homologues 5
HPV human papillomavirus
HTLV-I human T-cell leukemia virus
LncRNAs long noncoding RNAs
miRNA/miR micro-RNA
NONO non-POU domain-containing octamer-binding
OC ovarian cancer
PI3K phosphoinositide 3-kinase
Pin1 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1
PLK1/2 Polo-like kinase 1

2
PPP2R1B protein phosphatase 2 a, scaffold subunit Abeta
SCC squamous cell carcinoma
SCF Skp1-Cullin1-F-box
SGK1 serum and glucocorticoid-regulated kinase 1
UCS uterine carcinosarcoma
UPS ubiquitin-proteasome system
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