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Abstract
In the last decades, supernumerary robotic limbs (SRLs) have been proposed as technological aids for rehabilitation,
assistance, and functional augmentation. Whether they are in the form of wearable devices or grounded systems, SRLs can
be used to compensate for lost motor functions in patients with disabilities, as well as to augment the human sensorimotor
capabilities. By using SRLs, users gain the ability to perform a wide range of complex tasks that may otherwise be
challenging or even impossible with their natural limbs. Designing effective strategies and policies for the control and
operation of SRLs represents a substantial challenge in their development. A key aspect that remains insufficiently ad-
dressed is the formulation of successful and intuitive augmentation policies that do not hinder the functionality of a person’s
natural limbs. This work introduces an innovative strategy based on the exploitation of the redundancy of the human
kinematic chain involved in a task for commanding SRLs having one degree of freedom. This concept is summarized in the
definition of the Intrinsic Kinematic Null Space (IKNS). The newly developed procedure encompasses a real-time analysis
of body motion and a subsequent computation of the control signal for SRLs based on the IKNS for single-arm tasks. What
sets our approach apart is its explicit emphasis on incorporating user-specific biomechanical and physiological char-
acteristics and constraints. This ensures an efficient and intuitive approach to commanding SRLs, tailored to the individual
user’s needs. Towards a complete evaluation of the proposed system, we studied the users’ capability of exploiting the IKNS
both in virtual and real environments. Obtained results demonstrated that the exploitation of the Intrinsic Kinematic Null
Space allows to perform complex tasks involving both biological and artificial limbs, and that practice improves the ability
to accurately manage the coordination of human and supernumerary artificial limbs.
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1. Introduction

Supernumerary robotic limbs (SRLs) offer the possibility to
augment human capabilities in terms of perception and
manipulation abilities (Eden et al., 2022; Prattichizzo et al.,
2021), allowing individuals to perform complex sensori-
motor tasks by coordinating biological and artificial limbs.
Differently from prostheses and exoskeletons (Bao et al.,
2019), which are designed to empower human natural
movements, SRLs represent additional degrees of freedom
(DoFs) that need to be controlled independently from and
simultaneously with biological limbs. Moreover, when
SRLs are adopted as artificial aids for assistance, rehabil-
itation, and functional augmentation purposes, ease of use
and ease of learning become crucial. Such ease should be
recognizable under several aspects, ranging from the in-
tuitiveness of the control strategy to the users’ autonomy
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while using the augmentative devices. For instance, en-
hancing independency in patients suffering from motor
disorders and impairments is fundamental to improve their
quality of life.

The cutting-edge component to implement the idea of
augmentation is the design of wearable sensorimotor inter-
faces. From a broad perspective, these interfaces are meant
for establishing a bidirectional connection between the hu-
man sensorimotor system and the robot’s system of actuators
and sensors. Through this connection, reciprocal awareness,
trustworthiness, and mutual understanding are intended to be
achieved, enhancing the overall integration between the user
and the SRLs. For instance, by capturing signals from human
body motion or muscle activation, the sensorimotor inter-
faces can leverage the redundancy of the human sensorimotor
system to map commands for the robot limbs.

The research done in the last decades in augmentative
and assistive robotics has been developing SRLs with
different usages (fingers, hands, arms, legs), actuation
systems (fully actuated, underactuated), and design features
(rigid/soft materials, level of anthropomorphism, etc.).
Besides the complexity of designing light and portable
mechanical structures, it is important to consider the in-
teraction between the robot and the human. Since the final
aim of SRLs is to augment the manipulation or locomotion
capabilities of humans, control signals from the human to
the robot have to be acquired without interfering with the
biological limbs.

To take a significant stride towards realizing this am-
bitious scenario, our work presents a novel methodology to
extract a signal from the human kinematic redundancy for
enabling the simultaneous control of natural and artificial
limbs during task execution. Here, by kinematic redun-
dancy we refer to body motions that do not affect the action
of the biological hands. While, regarding muscular re-
dundancy, that is, muscle activation patterns that do not
generate net joint torques (e.g., the co-contraction of two
antagonistic muscles, which counterbalance the effect of
each other), results are already available in Gurgone et al.
(2022).

From the user’s perspective, control strategies can be
distinguished as autonomous and non-autonomous. In
this work, the term non-autonomous will be used to mean
an intentional and dedicated command which requires
precise instructions from the user. As an example, a
stroke patient with an impaired upper limb can activate an
extra-finger through a push button placed on a ring worn
on the healthy hand (Hussain et al., 2017). On the
contrary, the term autonomous will be used to describe a
control law which is able to adapt the system functioning
to the user’s will without receiving specific instructions.
This is usually represented by a control signal associated
to an action which is not clearly distinguishable from
those required by the ongoing task. For instance, an extra-
leg supporting the wearer’s gait should follow the in-
tention of walking without waiting for specific instruc-
tions on when to make a step.

As this paper aims at introducing a novel approach to
non-autonomous control for SRLs, in the next section, we
overview the state of the art focusing on techniques adopted
to control SRLs in a non-autonomous way.

2. Related work

One of the first examples of SRLs dates back to 1981, when
Stelarc built the Third Hand, a supernumerary five-finger
robotic hand activated by abdominal and leg muscles (Kac,
1997). This wearable robot was primarily designed for
artistic performances and lacked practical utility in aug-
menting human functional capabilities. Building upon that
initial work, the development of supernumerary robotic
limbs has been an ongoing, decades-long effort.

Taking into account more recent literature, Prattichizzo
et al. (2014) presented the Sixth Finger, a modular extra-
finger that can be worn on the wrist. While the mechanical
design of the prototype has remained quite similar, several
control strategies have been exploited in the last few years.
As a first approach, a dataglove was used to capture the
motion of the human hand, which was mapped in the motion
of the extra-finger. In Hussain et al. (2015), the device
flexion/extension was regulated through a wearable switch
embedded in a ring, while in Franco et al. (2021), the
authors presented a manually actuated version of Sixth
Finger, featuring a ratchet system. The latter can be rotated
using the contralateral hand to wind a tendon running
through the finger, thereby flexing the entire structure. In
Abdi et al. (2016), the authors presented a three-handed
manipulation paradigm using the motion of a foot to control
a third hand in a simple task. Similarly, in Kojima et al.
(2017), the foot was selected as a preferred location for
moving a robotic arm, while Kieliba et al. (2021) controlled
a third robotic thumb using a toe. In Nguyen et al. (2019),
the authors controlled their wearable SRL using three
different control strategies based on three sensing setups,
namely, an analog joystick, an IMU mounted on the dorsal
side of a glove, and two surface electromyography sensors
placed on one bicep muscle.

Most of these results highlight an implicit compromise in
the strategies selected to control an SRL. Subjects can
acquire new capabilities thanks to the supernumerary ro-
botic limbs, but the dexterity of their limb is reduced by the
need to command the robot. Similarly, the achievement of
functional augmentation comes with a trade-off, potentially
affecting other functionalities. Hence, this literature review
raises an important research question: can humans learn to
operate a supernumerary robotic limb collaboratively with
their biological limbs, without restricting other physical
abilities? To successfully achieve robotic body augmenta-
tion, we need to ensure that, by giving a user an extra ar-
tificial limb, we are not trading off the performance of
the task.

A few approaches for functional augmentation based on
these concepts have been recently investigated. An example
is in Salvietti et al. (2016), where surface electrodes placed
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on the user’s frontalis muscle allowed to capture an elec-
tromyography signal to activate the Sixth Finger motion. A
more complex system involving electroencephalography
(EEG) was evaluated by Penaloza and Nishio (2018). The
authors proposed an interface based on EEG for controlling
an SRL that can be activated when the human operator
imagines a grasping action. In Lisini Baldi et al. (2017), the
motion of an assistive robotic arm was controlled through a
human–machine interface based on a combination of head
tilt estimation and electromyography signals. Dominijanni
et al. (2023) proposed a human–machine interface that
integrates the user’s gaze and diaphragmatic respiration to
control the orientation and movement of the extra arm. In
their work, diaphragmatic respiration modulation is de-
coded in three states, with diaphragm expansion corre-
sponding to a forward movement of the extra arm,
diaphragm contraction corresponding to a backward
movement, and relaxation corresponding to rest. To control
the extra arm, users had to gaze at a given target appearing in
the virtual environment to select it and then could control
the movement toward the target (or away from it) by ex-
panding (or contracting) their diaphragm beyond a given
threshold.

Despite the aforementioned control approaches not
hindering other users’ functions, they involve motions of
body parts not directly implicated in the motor task, thus
requiring further resources from the user. Moreover, such
body parts may be required for other concurrent tasks in
most application scenarios, and not be available for SLR
control. For example, the motion of the foot to control an
SRL may be used if the user is sitting but unavailable if the
user is standing or walking. Finally, the majority of control
approaches operate on a discrete control basis, lacking fine
control over the robot.

In this context, the goal of this research is to introduce a
new control paradigm highly focused on users and their
tasks. The underlying idea is to exploit the redundancy of
the human musculoskeletal system to control extra degrees
of freedom. To understand the potential of this approach,
the wide range of movements that can be performed to
complete the same task has to be considered. This re-
dundancy is not surprising considering the complexity of
the human body: Zatsiorsky (1998) estimated that there are
148 movable bones and 147 joints in the human body,
which represent 244 degrees of freedom, a huge number
compared with the DoFs required for ordinary tasks. Even
considering a simple model of the upper limb with 7 DoFs,
position and orientation of the hand (6 DoFs) can be
maintained by different limb postures. Despite this, many
control interfaces for robotic devices take advantage of
functional DoFs rather than redundant DoFs. One plau-
sible rationale for this prevalent design choice stems from
our limited awareness of redundancy. In practice, we
execute movements for a specific task based on what
intuitively feels most natural, without thoroughly ana-
lyzing all potential kinematic configurations. Moreover,
when developing human–machine interfaces, engineers

tend to search for standard design guidelines to match the
requirements of a wide range of users. On the contrary, the
available degrees of freedom change according to the user
and the task. Thus, only an accurate a priori evaluation of
the user–task pair (e.g., user’s motor features) can provide
parameters to properly calibrate a control interface based
on the kinematic redundancy.

3. Motivation and contribution

The motivation for this study arises from the inherent
constraints associated with controlling supernumerary ro-
botic limbs using motions of body parts not directly in-
volved in the motor task at hand. For instance, all control
policies relying on inputs from the lower limbs to manage
SRLs assisting in manipulation tasks inevitably restrict the
user’s freedom to stand stably or to walk during task ex-
ecution. Beyond the need to stand or walk during the task,
there exist numerous daily life scenarios where allocating a
biological upper limb for SRL control proves impractical.
Consider, for instance, the multitude of situations in which
we perform two unimanual tasks simultaneously, essential
for optimizing our daily routines, or the many bimanual
tasks in which we rely on the coordinated motion of both
upper limbs. Examples of simultaneous bimanual tasks
range from using a phone with one hand while writing on a
paper with the other to culinary activities such as stirring
ingredients in a bowl while simultaneously pouring or
measuring others. Examples of bimanual tasks include
manipulating large objects (e.g., boxes), holding bread with
one hand while cutting a slice with the other, pushing a
shopping cart while grocery shopping, or folding a shirt.

In these scenarios, using body parts not directly involved
in the ongoing task(s) for SRL control is not possible
without sacrificing other essential actions, thus reducing the
users’ capability. This implication contradicts the very idea
of human augmentation, particularly for individuals with
reduced mobility who rely on SRLs to restore lost func-
tionalities rather than replace useful abilities.

This is the reason why, in this work, we want to evaluate
the feasibility, the limits, and the potentialities of using
motions of body parts already involved in the ongoing task
to control a 1-DoF SRL. Our premise is that control based
on additional body parts’ motions offers superior perfor-
mance, being inherently simpler and more established
compared to relying solely on motions of already involved
body parts. Therefore, with the proposed technique we do
not expect to outperform that methodology, but rather to
assess the extent to which our approach diverges from it.

To put it briefly, the contributions of this work can be
listed as follows:

· a novel methodology for computing the Intrinsic Ki-
nematic Null Space for seamless integration of SRLs
into human activities. The concept is visually repre-
sented in Figure 1, in which a user is controlling an extra-
finger through the proposed control paradigm;
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· a systematic and quantitative assessment of performance
that comprises an evaluation conducted within a com-
mon framework designed for measuring the enhance-
ment capabilities of a specific SRL Human–Machine
Interface (HMI) implementation and for comparing
various implementations in the field of human
augmentation;

· a preliminary comparison with other HMIs, namely,
Intrinsic Muscular Null Space and Extrinsic Kinematic
Null Space.

In what follows, we start providing the definition of the
proposed control paradigm based on the exploitation of the
Intrinsic Kinematic Null Space. Then, we introduce the
experimental campaign designed to assess the performance
of participants in simultaneously controlling natural and
extra DoFs.

In particular, the first experiment aimed at verifying
whether the Intrinsic Kinematic Null Space can be used to
command an extra degree of freedom to perform dual tasks.
Then, with the second experiment, we performed a detailed
analysis of how the users’ control ability is affected by the
difficulty of the task and how fast performance improves
with practice.

Once the capability of the control paradigmwas assessed,
we conducted further experiments to examine its exploit-
ability in a real-world environment. In Experiment 3, subjects
were asked to control a wearable SRL while performing dual
tasks related to activities of daily living. Following that, in
Experiment 4, the focus shifted to controlling a grounded
SRL while engaging in similar dual-task scenarios. Finally,

limitations, conclusions and directions for possible future
work are drawn in the conclusive Sections.

To the best of our knowledge, this represents the first
attempt to investigate the feasibility and usability of this
novel control strategy for human–device interaction.

4. Intrinsic kinematic null space

4.1. Definition

The main novelty introduced with this work concerns the
concept of Intrinsic Kinematic Null Space.

According to the definition of kinematic null space in
robotics, the redundancy of the human body, that is, the fact
that there are more degrees of freedom than those required
for a certain task, is exploited to command an additional
degree of freedom.

Adapting the concept of kinematic null space to the
human body is not a straightforward operation: differently
from a serial robotic manipulator, humans have more than
one end-effector (e.g., hands and foots) and can perform
multiple tasks at the same time. Thus, for identifying the
exploitable degrees of freedom, it is necessary to specify
which is the considered end-effector and, consequently, the
task we refer to.

From this perspective, considering a task to be accom-
plished and the kinematic space of the whole body, we can
make a distinction between two types of null space:

Extrinsic Kinematic Null Space (EKNS) that refers to ve-
locities of joints which are not involved in such a task;

Intrinsic Kinematic Null Space (IKNS) that refers to ve-
locities of joints directly employed in the task.

For instance, grabbing a box with two hands involves
joints of shoulders, upper arms, forearms, and wrists.
Motions of all the other joints (e.g., knees and ankles) are in
the Extrinsic Kinematic Null Space. On the contrary, the
motion of the joints of shoulders, upper arms, forearms, and
wrists which does not generate velocities of the hand be-
longs to the Intrinsic Kinematic Null Space.

Bearing in mind the control of SRLs, movements in the
EKNS may be easier to identify, and thus to be extracted and
associated to the device control. However, their exploitation
would limit users’mobility by demanding the involvement of
further joints beyond those required for the task execution. As
mentioned in Section Introduction, taking advantage of
movements in the Intrinsic Kinematic Null Space lets the user
operate a device using body parts already involved in the
task, without compromising the use of free limbs which
instead may be involved in further parallel tasks.

In this work, we focused our attention on exploiting
motions in the IKNS in the specific use case of controlling a
SRL while performing single-arm tasks, since we identified
them as critical for impaired people and the most para-
digmatic for presenting this innovative approach. To

Figure 1. A user exploiting her Intrinsic Kinematic Null Space for
controlling the opening/closing mechanism of a wearable
robotic extra-finger in an augmented manipulation task. The task
requires the involvement of natural (i.e., the right arm) and artificial
(i.e., the robotic extra-finger) limbs to pick and place objects.
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identify the IKNS in a simple single-arm task, the following
procedure was adopted.

4.2. Computation

While in robotics computing the null space of a given ki-
nematic chain is a straightforward operation, this estimation
is more challenging when applied to humans. The problem
stems from the lack of simple kinematic models incorpo-
rating the wide range of constraints each human body can be
subjected to. Besides the anatomy of the human muscu-
loskeletal system, ages, habits, and motor skills strongly
influence the way people interact with objects and the
surrounding, with the outcome that each individual is prone
to perform the same task in a different way.

To overcome this problem, we developed a user-centred,
data-driven, systematic procedure to identify the IKNS. An
overview of the method is shown in the block scheme
depicted in Figure 2. The first step to take before computing
the IKNS is that of identifying the kinematic chain to be
analyzed. Then, data acquired from the identified joints will
be used to compute the IKNS.

4.2.1. Kinematic chain identification. As stated in its defi-
nition, the IKNS is dependent on the performed task. For this
reason, to estimate the current involved joints, it is fundamental
to take into account some general knowledge on the mor-
phology and the kinematic constraints of the human body to
determinewhich joints are required to perform a certain task. In
other words, the kinematic chain involved in the task needs to
be a-priori identified. For instance, in this paper we consider a
single-arm task, where the end-effector is the hand and con-
sequently the significant chain is composed of the joints of
shoulder, elbow, and wrist, and the associated links. Joint
velocities that do not contribute to change the hand velocity are
then considered belonging to the IKNS.

4.2.2. Data collection and clustering. To compute the IKNS
of a certain person, their movements need to be recorded
during the task execution and then analyzed. In particular, the
pose and velocity of the end-effector of the selected kinematic
chain and the velocity of its joints need to be estimated.

It is worth noting that the null space changes in accor-
dance with the position of the end-effector, that is, it de-
pends on the actual kinematic chain configuration. Hence, in

theory it would be necessary to compute the null space for
each point of the workspace. To avoid this physical burden
for the users, we developed a procedure to automatically
find the null space in any point of the user’s workspace
given its value in a finite set of N points.

Let us now focus on the single-arm task considered in
this paper. TheN points correspond to 3D poses of the user’s
hand and are chosen to cover the dexterous region of the arm
workspace. Indeed, considering the entire available workspace is
useless since at the boundaries themobility of the considered body
part is reduced. For instance,when the arm is fully extended (at the
limit of the reachable workspace), it is not possible to impose an
arbitrary motion to the arm without moving the hand.

In the data collection phase, the user is asked to execute
the single-arm task in each of the N points while exploring
the entire range of IKNS motions. At each time instant t, the
velocity of the J DoFs of the selected kinematic chain is
acquired and stored in _q2R

J , whereas the position of the
hand is saved in a vector p2R

3. At the end of the data
collection, the acquired S samples of _q and p are collected
and stored into X 2R

S×J and Y 2R
S×3, respectively.

Data captured in theN points are clustered and separately
analyzed. The algorithm is based on the k-means approach
and implements the following steps:

(1) Compute a minimal bounding box for the recorded
hand poses Yusing the algorithm proposed in Korsawe
(2015).

(2) Initialize the coordinates of the N centroids μ1, …, μN.
If N <8, that is, lower than the number of bounding box
corners, starting centroids are randomly assigned to N
corners; if 8 ≤ N <14, where 14 corresponds to the
number of corners plus the number of faces of the
bounding box, starting centroids are placed onto the
corners and randomly assigned to the centre of N �
8 faces; if N = 14, starting centroids are assigned to all
corners and centres of the faces; otherwise, if N >14,
starting centroids are placed onto the corners, in the
centres of the faces, and then randomly in each face.

(3) For each point pi 2 Y, with i = 1, …, S, compute the
Euclidean distance between pi and each centroid μk,
with k = 1, …, N, and assign pi to the cluster with the
closest centroid by computing the label:

ci ¼ arg min
j

��pi � μj
��2
:

(4) Compute the average of the observations in each
cluster to obtain new centroid locations:

μj ¼
PS

i¼11fci ¼ jgpiPS
i¼11fci ¼ jg for j ¼ 1,…,N :

(5) Repeat steps (3) through (5) until cluster assignments
do not change, or the maximum number of iterations is
reached.

Figure 2. Flowchart reporting the phases for computing the
control signal. The process starts with a preparatory phase in
which the kinematic chain is identified accordingly with the task
and N points are selected for exploring the range of IKNS motions.
Then, the ‘Data Collection and Clustering’ phase considers the
data acquired during the motions and outputs the direction (Z), the
minimum (m), and maximum (M) values for each cluster.
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(6) For each cluster, consider only data _qi 2X laying in an
appropriate neighbourhood of the centroids. The re-
sulting clusters Kj, with j = 1, …, N, are defined as
follows:

Kj ¼
�
_qi : ci ¼ j and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��pi � μj
��2

q
≤ ρ

�
, (1)

where ρ has to be experimentally evaluated and refined in
accordance with the task characterization.

At this stage, the multidimensional space of the kine-
matic null space has to be projected in the extra degree of
freedom space. This has to be done cluster-wise.

For each cluster j, firstly the acquired joint velocities are
transformed through Principal Component Analysis (PCA)
into a set of values of linearly uncorrelated variables called
Principal Components (PCs). PCA is particularly effective
in dealing with a large number of system variables. Sec-
ondly, depending on whether the percentage of data vari-
ation explained by the first principal component is at least
80% or not, either this one or the norm of the first two PCs
can be taken as direction Zj 2R

1×J for controlling the in-
tended DoF. Finally, the minimum (mj) and maximum (Mj)
values of the user motion along Zj are stored for normali-
zation purposes.

Figure 2 illustrates the steps leading to the computation
of the directions for the IKNS-based control signal, while
Figure 3 depicts data collected and clustered in a repre-
sentative trial with N = 10. In Figure 3(a), the trajectory
performed by the user is reported. In Figure 3(b), the
identified clusters are depicted and highlighted with blue
spheres. Finally, the considered points for computing the
cluster-wise PCA are shown in Figure 3(c).

4.2.3. Online interpolation. As previously mentioned, the
null space changes depending on the position of the hand
with respect to the whole body. Thus, a fundamental re-
quirement for the effective control of an extra DoF is the
capability of computing the IKNS-based control signal in
the whole user’s workspace in real time manner. In the
proposed implementation, the algorithm exploits Zj, mj,
and Mj to compute online and seamless the value for
controlling the SRL. A three-dimensional Delaunay

triangulation-based natural neighbour interpolation
(Cazals et al., 2004; Lee and Schachter, 1980) is used to
reconstruct online the direction associated to the current
null space as a smooth approximation of the directions of
the nearest clusters. The Delaunay triangulation is an
established method to define neighbourhood relations in
multi-particle systems. In this way, it is possible to
compute the control signal in any point of the working
space, depending on the posture of the user. The control
signal c is calculated as follows:

c ¼
bZq� bm�� bM � bm�� (2)

where bZ 2R
1×J is the interpolated direction which projects

the current vector _q2R
J into the monodimensional space of

the control signal, while bm and bM result from the inter-
polation of m and M, and are used to normalize the control
signal in a range from 0 to 1.

5. Experimental design

5.1. Methodology

The goal of the experiments presented in this paper was to
assess whether the proposed system is effective for con-
trolling an extra degree of freedom.

The experimental validation aimed at answering the
following research questions:

(i) Is it possible to use the IKNS to command an extra
degree of freedom to execute dual tasks?

(ii) How is the user control ability affected by practice
considering the difficulty of the task?

(iii) Is the IKNS-based control easy to learn for op-
erating a wearable extra-finger to accomplish
common activities of daily living requiring si-
multaneous tasks?

(iv) How does user performance in accomplishing com-
mon activities of daily living that involve simultaneous
tasks differ when using the IKNS-based control
compared to an EKNS-based control?

Figure 3. From data collection to workspace clustering in a representative trial. In (a), the trajectory depicted by the marker attached to
the user’s right hand. In (b), clusters are represented by different colours, while the considered neighbourhood of the centroids is
highlighted with blue spheres. In (c), only the data considered for the PCA are reported.
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Experiments were conducted both in virtual and real
environments. A flow diagram of the experimental proce-
dure is in Figure 4. Each user gave their written informed
consent to participate and was able to discontinue partici-
pation at any time during the experiments. The experimental
evaluation protocols followed the declaration of Helsinki,
and there was no risk of harmful effects on participants’
health. Data were recorded in conformity with the European
General Data Protection Regulation 2016/679, stored on
local repositories with anonymized identities
(i.e., User1 and User2), and used only for the post pro-
cessing evaluation procedure.

Overall, 38 subjects participated in the experimental
campaign, ten in each of the first three experiments and
eight in the fourth experiment. They were seven males and
three females (from 22 to 57 years old, mean 35 ± 4.5, all
righthanded) in the first experiment, five males and five
females (from 25 to 43 years old, mean 31 ± 2.5, all right-
handed) in the second experiment, six males and four fe-
males (from 21 to 55 years old, mean 28 ± 5.5, all right-
handed) in the third one, and four males and four females
(from 26 to 59 years old, mean 34 ± 10, all right-handed) in
the fourth one, respectively. All of the participants were
healthy subjects, and none of them had previous experi-
ences in controlling supernumerary robotic limbs.

Every experimental session was preceded by a calibra-
tion procedure in which the IKNS of each subject was

identified by applying the procedure described in the pre-
vious section.

All the experiments were performed in a room equipped
with 10 Vicon Bonita cameras. To record arm joint angle
values, retro-reflective markers were attached to the subject,
who was located at the centre of the room. Eight cameras
were placed at the upper corners (two per corner, with a
different orientation), while the remaining two were fixed to
tripods placed on opposite sides of the room, on the left and
right side of the subject, respectively. The body posture was
reconstructed online by means of Vicon Nexus 3.10 Soft-
ware (Vicon Motion Systems Ltd, UK), with a frame rate of
100 Hz.

5.2. Calibration

5.2.1. Skeleton calibration. As a first step, 24 retro-
reflective markers were attached to the subject in accor-
dance with the Oxford Upper Body Model (Vicon Motion
Systems Ltd UK, 2022), following the schematic illustration
reported in Figure 5(a). To calibrate the system, each par-
ticipant was asked to stand at the centre of the room for 5 s.
A static acquisition and anthropometric measurements were
used to create each user’s upper body skeleton model,
consisting in 20 DoFs (as visually depicted in Figure 5(b)).
An example of user-calibrated upper body skeleton is
shown in Figure 5(c).

5.2.2. IKNS computation. Once the skeleton was modelled,
a dedicated computer acquired images from the cameras.
Thanks to the calibration procedure, the user’s skeleton was
automatically reconstructed and the kinematic model was
fitted online. This step enabled the real time capturing of
joint angle values and body segments positions. To gain
awareness of the workspace, participants were asked to seat
and explore the arm workspace with the hand without
moving the torso. After 1 minute of free exploration, par-
ticipants were told to visualize an imaginary parallelepiped
covering their arm dexterous workspace and to select
10 points that is eight in the proximity of the vertexes and
two at the centres of the upper and lower surfaces. To avoid
arm singularities, participants were suggested to exclude

Figure 5. (a) Vicon markers positioning in accordance with the Oxford Upper Body Model (Vicon Motion Systems Ltd UK, 2022), (b)
the skeleton DoFs considered within this work, and (c) the kinematic model of a subject fitted online in a representative trial.

Figure 4. Flow diagram of the experimental procedure.
Experiments conducted in the virtual environment (i.e., 1 and 2)
are depicted in dark red, while experiments conducted in the real
environment (i.e., 3 and 4) are depicted in light red. The number of
trials is reported for each experiment and for each experimental
condition.
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points on the boundaries of the arm workspace (i.e., where
the arm is fully extended). Participants were instructed to
place the hand in each of the selected points and freely move
the arm for 5 seconds, holding the hand as steady as possible
(i.e., without changing position and orientation). They were
asked to explore the entire range of motion available in each
position to record minimum and maximum reachable
values.

Starting from the values recorded in the 10 calibration
points (Figure 3(c)), the algorithm described in Section
Intrinsic Kinematic Null Space can compute the control
signal in the entire user’s surrounding. Thus, when the user
performed movements in the IKNS, a software was in
charge of computing the projection of the current joint
values to the actual direction in real time, depending on the
current hand position. The resulting value was then used to
control the additional DoF required by the particular task
under investigation. All subjects performed the experiments
exploiting for each cluster only the first principal compo-
nent as direction for generating the control signal.

6. Experiment 1 – dual task

6.1. Experiment description

In this experiment, we aimed at answering the first research
question, that is, “Is it possible to use the IKNS to command
an extra degree of freedom to execute dual tasks?” To this
end, a virtual environment was developed and rendered
using a Samsung HMDOdyssey (Samsung Electronics Co.,
Ltd.), as illustrated in Figure 6.

Participants were asked to seat andmove their upper limb to
control the position and the radius of a virtual sphere. The goal
of the experiment was to overlap two spheres: one controlled
by the user and one considered the target. Two different
conditions were tested. In both conditions, subjects could
change the radius through the IKNS-based control signal,
which was mapped for the purpose in the range [0, 100] cm. In
the first condition, the position of the target sphere was
fixed, while in the second condition, the user had also to
align with the position of the target sphere by moving the
hand. In particular, the coordinates of the centre of the

sphere corresponded to the coordinates of the marker
positioned on the back of the right hand. In other words, in
the second case two simultaneous tasks were required: the
primary task was to align the centres of the two spheres and
the secondary task was to adapt the radius of the controlled
sphere to match the target dimension.

Each subject repeated the experiment twice, testing both
the conditions proposed in a random order. For each
condition, three trials corresponding to three different
target positions were tested. For the ‘Dual Tasks’ condi-
tion, trials started displaying a tiny red sphere (indicating
the current hand position) and an initial target sphere with
15 cm radius. This initial phase lasted 5 s and served to let
the user align the spheres centres. Then, the radius of the
goal sphere changed five times assuming random values in
the range [10, 90] cm, once every 5 s. Differently, for the
‘Single Task’ condition, the position of the hand was not
shown in the virtual environment (as the user could not
control the position of the sphere), and the initial phase of
5 s served only the purpose of preparing the subject for the
starting of the trial. Then, as in the other condition, the
radius of the goal sphere changed five times in the range
[10, 90] cm.

6.2. Metrics of interest

Errors in matching the radii (in both conditions) and in
correctly positioning the centres of the spheres (only for
the second condition) were considered as metrics of
success in accomplishing the task. Therefore, perfor-
mance in (i) maintaining the hand in a steady position
and (ii) matching the spheres radius were measured by
means of the Root Mean Square Error (RMSE). For the
performance in maintaining the hand in a steady posi-
tion, the considered error did not include the initial
alignment. Similarly to Parietti and Asada (2017), for
each trial t, we defined the RMSE as

RMSEt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
i¼1

ðyt, i � yiÞ2
s

, where N is the number of

samples collected during the trial, yi is the actual control
value, and yt,i is the corresponding target value. Notice
that the tracking RMSE is a suitable metric to evaluate
the rapidity and the accuracy in a tracking task
(Krakauer and Mazzoni, 2011). This is due to the fact
that the RMSE increases both if users are slow in
adapting the control variable and if they miss the targets.
In other words, human control has to be simultaneously
fast and accurate to yield a low RMSE. The RMSEs were
used to analyze the tracking performance throughout the
whole experiment.

6.3. Results and Discussion

The opportunity of performing multiple tasks with the same
body part is one of the novelties presented in this work. Thus,

Figure 6. (a) The user wearing retro-reflective markers. (b) The
sphere controlled by the user (red sphere) overlapping the target
sphere (green sphere) in the case of parallel tasks.
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answering to the question “Is it possible to use the IKNS to
command an extra degree of freedom to execute dual tasks?”
represents a key point for the overall evaluation. Additionally,
considering the specific use case explored in this study,
people controlling SRLs often require to simultaneously
accomplish multiple tasks (such as grabbing a bottle and
unscrewing the cap, stabilizing an apple and peeling it, etc.);
therefore, the feasibility of associating the control interface to
the natural limb involved in the task needs to be assessed. To
this aim, we designed Experiment 1 to evaluate the user
ability in carrying out two tasks at the same time, both in-
volving the same kinematic chain.

For assessing the feasibility of using the IKNS-based
control to fulfil an additional task, we compared the perfor-
mance achieved in the aforementioned case with the per-
formance obtained when using the IKNS was the only task
required. This way, the first condition (the one with only the
IKNS-based task) served as reference for evaluating the
performance obtained when performing parallel tasks. Con-
cerning the results of the second condition, if both the RMSEs

on primary and secondary tasks are low and comparable, the
proposed strategy is considered effective. On the contrary, an
unbalanced performance output indicates that the IKNS-based
approach is too demanding or not suitable for the purpose.

Results are reported in Table 1. The target radius and the
value of the radius controlled by the user in a representative
trial is depicted in Figure 7(a), while in Figure 7(b) we report
the corresponding error in aligning the spheres centres. We
considered RMS errors in adjusting the radius in both con-
ditions (with and without the requirement on the hand posi-
tioning). Outcomes showed that the proposed approach is
feasible. Indeed, the average RMSEs among all the trials for all
the participants computed for the two cases are comparable
(Single Task = 15.81 ± 2.08 cm, Dual Tasks = 15.30 ±
1.89 cm). In addition, the error on the hand positioning task
(second condition) shows that participants did not lose focus
on the primary task despite the increased cognitive load re-
quired by the experiment (mean RMSE = 4.37 ± 2.09 cm). A
paired-samples t test was used to determine whether there was
a statistically significant mean difference between the radii

Table 1. Results of Experiment 1.

Single task Dual tasks

Radius RMSE (cm) Radius RMSE (cm) Position RMSE (cm)

Trial1 Trial2 Trial3 Trial1 Trial2 Trial3 Trial1 Trial2 Trial3

User1 12.56 17.17 15.80 13.00 14.49 13.81 8.05 2.43 2.34
User2 14.01 16.00 16.00 14.95 15.31 15.15 2.50 3.52 6.11
User3 15.81 17.46 21.37 14.01 18.00 21.75 4.59 9.03 3.31
User4 18.00 17.55 19.23 16.22 16.38 18.24 4.20 8.53 4.10
User5 14.78 16.22 17.61 14.01 16.94 18.54 4.05 9.03 5.43
User6 13.69 16.62 15.15 14.95 12.98 16.30 3.50 7.33 2.55
User7 12.45 15.49 17.07 15.80 13.85 14.52 5.74 2.94 2.33
User8 12.74 17.00 15.15 13.60 14.72 13.84 2.83 4.37 2.89
User9 13.05 15.71 15.07 13.54 15.23 14.64 2.84 3.28 2.44
User10 12.37 15.80 17.52 14.46 14.72 15.11 3.48 4.30 3.04
Mean ± STD 15.81 ± 2.08 15.30 ± 1.89 4.37 ± 2.09

For each user is reported the RMSE of each trial, considering both the error in matching the radii (for both cases, i.e., single task and dual tasks) and in
matching the centres (only for the dual-task case). The bold items are to highlight the differences with resepet to the lines above.

Figure 7. A representative trial of Experiment 1. (a) Desired and actual radius values are reported in blue and red, respectively. (b) The
error in accomplishing the primary task position matching. The green background highlights data considered for the analysis.
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RMS error obtained when participants exploited the system to
accomplish a single task compared to the condition in which
they were asked to perform two tasks simultaneously. No
outliers were detected. The assumption of normality was not
violated, as assessed by Shapiro–Wilk’s test (p = .819). Result
of the test revealed that the increase of 0.51 cm between the
two conditions was not statistically significant, t (29) = 1.77,
p = .087. Thus, using the IKNS to control an additional degree
of freedom in a dual task did not affect the performance of the
primary task.

7. Experiment 2 – control ability and practice

7.1. Experiment description

In the second experiment, we aimed at assessing and
evaluating users’ control ability by quantifying whether
and how fast a control based on the Intrinsic Kinematic
Null Space improves with practice. Hence, here we an-
swer the question “How is the user control ability af-
fected by practice considering the difficulty of the task?”
A virtual environment was developed in Unity using C#
for the purpose, and rendered using a Samsung HMD
Odyssey.

The experiment was designed as a sequence of 14 blocks.
In all blocks, the user was asked to use their hand position
(tracked using the retroreflective marker attached on the
hand back, see Figure 5(a)) to directly control the position of
a cursor and match a target placed in one of the nine spatial
positions around the rest position, which was a sphere
located in front of the right shoulder with the elbow at 90°
flexion. However, while in the first and the last blocks
(B1 and B14) both cursor and target were spherical in shape
(see Figure 8(a)), in the remaining blocks (B2 to B13) they
were prolate spheroids (see Figure 8(b)). In fact, in these
blocks the user was asked to control simultaneously cursor
position and orientation around the axis passing through the

equatorial radius of the spheroid and normal to the targets
plane, exploiting the IKNS-based control signal to adjust the
orientation.

Each block was made of three cycles, in each of which
the user was asked to match nine targets, that is, one per
spatial position, for a total of 27 targets per block. The
sequence of spatial positions was pseudo-randomly ordered
for each cycle. Each target remained active for 10 s, and
participants were instructed to match the target (only
reaching in B1 and B14, reaching and orienting in B2–13)
as fast as possible, and then hold the cursor on the latter for
the remaining time, until the target disappeared. To stan-
dardize target distances, at the beginning of each block and
after the expiration of each target, the user was asked to
reach the rest position to activate the next target. The rest
position was always spherical regardless of the block, hence
it was considered matched when the cursor lied within the
spatial threshold for 1 s, without considering the cursor
orientation. As regards targets, depending on the current
block they were considered matched when position (in
B1 and B14) or both position and orientation (in B2–13) of
the cursor were within angular and spatial tolerances. The
distance between cursor and goal was computed as the
Euclidean distance between the respective centres. Rest
position and targets were coloured blue and grey, respec-
tively, and they turned into green when the cursor was
within thresholds, to inform the user about the occurred
match. Only one goal at a time was shown in the virtual
environment.

Before the start of each block, a quick procedure allowed
the experimenter to set the virtual environment parameters
with respect to the user’s workspace. In particular, the user
was asked to move the hand to firstly indicate the rest
position, saved as p0 = [0 0 0], and then the radius of their
dexterous region, saved as r. Thus, targets were placed on a
circumference centred in p0with radius rt = 0.9r, that is 90%
of the user’s dexterous workspace. The nine target spatial
positions pk were defined as:

pk ¼
�
rt cos

�
2π
9
k

	
rt sin

�
2π
9
k

	
0



, k ¼ 1,…, 9:

As regards blocks B2–13, targets were oriented with the
major axis passing through the circumference radius rt, that
is,

θk ¼ 2π
9
k, k ¼ 1,…, 9,

where θk is the orientation of the target k. Similarly to the
position, the targets orientation could be reached exploiting
the 90% of the IKNS-based control signal range, which was
mapped to [�100, 100] deg. Spatial and angular tolerances
were set at the 3% of the maximum target distance and 4%
of the maximum target orientation, that is tp = .03rt and to =
3.6 deg, respectively. Such values were selected in accor-
dance with Gurgone et al. (2022), where we assessed the
feasibility of using the intrinsic muscular null space (IMNS)
for extracting a control signal rather than the IKNS.

Figure 8. The user was tasked to use the hand position to control
the position of a cursor (depicted in red) and match a target
(depicted in grey) placed in one of the nine positions around the
rest position (depicted in blue). In (a), cursor and targets are
spherical in shape as proposed in blocks B1 and B14. In (b),
cursor and targets are prolate spheroids as displayed in blocks
B2 to B13. Here, the user was asked to control the cursor
orientation exploiting the IKNS-based control signal. Blocks
order is reported in Figure 4.
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After the calibration procedure, participants sat on a
chair, wore the HMD displaying the virtual environment of
the experiment, and placed their right wrist on an arm
support with gravity compensation (SaeboMAS, Saebo,
USA) to reduce muscle fatigue during the experiment.
Before the experiment started, each participant had 3 min to
familiarize with the control by freely moving and orienting
the cursor, and a resting period of 15 min was given at the
end of each block. Data were logged with a rate of 100 Hz so
that the entire experiment could be played back for the
purposes of the analysis.

7.2. Metrics of interest

Only data acquired during the phases in which users were
asked to move the cursor from the rest position to the target
were considered for the analysis.

Task performance was evaluated considering four met-
rics: (i) reaching success rate, computed as the percentage of
reached targets in the block, (ii) holding success rate,
computed as the percentage of targets held for at least 1 s in
the block, (iii) holding time, computed as the maximum
time the cursor held the target matched within 10 s, and (iv)
angular error, computed as the difference between cursor
and target orientation when the cursor position was within
the spatial tolerance. It is worth noting that during the
experiment participants were instructed to hold the target as
long as possible, and the time limit of 1 s was set a posteriori
following the methodology presented in Gurgone et al.
(2022). This decision was driven by two key factors.
Firstly, by instructing the subjects to hold the position for as
long as possible, we aimed to avoid introducing additional
complexity associated with the need for mental estimation
of the holding duration. Secondly, this approach allowed for
further data analysis (refer to Section Experiment 2 – Re-
sults and Discussion – Movement models).

Furthermore, two additional metrics were investigated:
angular and spatial velocities of the cursor. The two ve-
locities and the related peaks were analyzed to assess
whether different participants used different strategies for
reaching and matching the targets.

Finally, we adopted an information theory-based ap-
proach based on Fitts’ Law (Fitts, 1954) to devise a model of
the participant motor behaviour. It predicts movement time
MT to a target as a linear function of an index of difficulty ID
of the target, that is,

MT ¼ a � IDþ b:

Following the formulation presented by MacKenzie
(1992), a target having width W at distance D has an ID
equal to

ID ¼ log2

�
D

W
þ 1

	
:

In this work, the ID definition was adapted to account for
the real complexity of the task proposed within the ex-
periment. As first step, we consider the distinction between
spatial ID (IDS) and temporal ID (IDT), which is needed to
account for both reaching and holding difficulties. This
leads to the interpolation of two different movement times,
that is,

MTR ¼ aS � IDS þ b
MTE ¼ as0 � IDS þ aT 0 � IDT þ b0

whereMTR is the movement time to reach the target, and
MTE is the movement time for the task execution, that is,
to reach and hold the target. Since reaching the target
means matching both target position and target orien-
tation, IDs is computed as the sum of two components:

IDs ¼ IDxyz þ IDθ

where IDxyz is the displacement ID, and IDθ is the orien-
tation ID. In particular, considering that the spatial threshold
tp was the same for the three axes, IDxyz can be defined as

IDxyz ¼ log2

�
D

Wxyz
þ 1

	
¼ log2

�
rt
2tp

þ 1

	
:

When dealing with pointing task in 3D space, the predictive
performance of the Fitts’ Law can be enhanced by including
in the model the directional parameters of the movement,
that is inclination and azimuth angles describing the 3D
target arrangement (Cha and Myung, 2013; Murata and
Iwase, 2001). In our case, rest position and target position
were always coplanar, hence we introduced in the IDxyz

definition a linear combination of sine and cosine functions
of the azimuth angle α:

IDxyz ¼ log2

�
rt
2tp

þ 1

	
þa � sinðb � αþ fÞ

þc � cosðd � αþ ψÞ þ e:

The coefficients of the linear combination (i.e., a, b, c, d,
e, f, and ψ) were calculated by fitting movement times to
IDxyz in B1 and B14 (R2 = 0.74). The rotation ID was
defined as follows:

IDθ ¼ log2

�
D

Wθ
þ 1

	
¼ log2

�
θ
2to

þ 1

	
:

As regards the temporal ID, an approach similar to the
one adopted for the ID general definition leads to the fol-
lowing expression:

IDT ¼ log2

�
T

tt
þ 1

	
where T = 10 s is the duration of the considered time limit,
and tt is the requested temporal accuracy. Then, to account
for the task error rate ϵ, we exploited the corrected index of
difficulty proposed in Gori et al. (2018), that is,
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IDðϵÞ ¼ ð1� ϵÞ � log2
�
D

W
þ 1

	
to define the total task ID as

IDðϵr, ϵhÞ ¼ ð1� ϵrÞ � IDS þ ð1� ϵhÞ � IDT

being (1 � ϵr) the reaching success rate, and (1 � ϵh) the
holding success rate.

As last measure of performance obtained from the Fitts’
Law, we considered the throughput, which is defined as the
ratio between the index of difficulty and the movement time.
Since the information rate of the holding task was fixed, we
considered only the throughput associated with the reaching
task, that is, the ratio between IDS and MTR.

7.3. Results and discussion

Data collected during the experiment were statistically
analyzed using MATLAB and SPSS (SPSS 20, IBM).

7.3.1. Task performance. Performance in B1 was evaluated
to establish a baseline for the users’ control ability. Results
for each participant are detailed in Table 4. On average,

participants reached the target 98 ± 4% of the times, and
held it for at least 1 s 77 ± 19% of the times. Mean holding
time across participants was 2.86 ± 1.06 s out of the 10 s
target duration. These results suggest that, when controlling
only the position of the cursor, participants easily reached
the target, but held it with more difficulty. Moreover, the
large standard deviations observed in the holding success
rate and in the holding time are indicative of a considerable
variability in the holding task performance between users.

As regards blocks B2–13, on average both success rates
increased with block progression. Mean reaching success
rate went from 50 ± 35% in B2 to 66 ± 32% in B13, while
mean holding success rate started from 27 ± 31% in B2, and
reached 37 ± 33% in B13. Reaching and holding success
rates across blocks for each participant are reported in
Figures 9(a) and 10(a), respectively, whereas in Figures 9(b)
and 10(b) we depict the corresponding mean values and
standard deviations. A generalized linear mixed model
(GLMM) analysis with target and cycle as fixed effects and
participant as random effect was performed on both success
rates to assess whether the latter significantly increased with
practice. Results showed a statistically significant depen-
dence of reaching success rate on cycle (p < .001) and target

Figure 9. Reaching success rate in Experiment 2. Mean rates in each block (B2–13) for all participants are reported in (a), whereas mean
value and standard deviation across participants are in (b). Mean reaching success rate went from 50 ± 35% in B2 to 66 ± 32% in B13. A
GLMM analysis with target and cycle as fixed effects, and participant as random effect, showed a statistically significant dependence of
reaching success rate on cycle (p < .001) and target (p < .001), with a slope of 0.026 per cycle.

Figure 10. Holding success rate in Experiment 2. Mean rates in each block (B2–13) for all participants are reported in (a), whereas mean
value and standard deviation across participants are in (b). Mean holding success rate started from 27 ± 31% in B2 and reached 37 ±
33% in B13. A GLMM analysis with target and cycle as fixed effects, and participant as random effect, assessed that the holding success
rate significantly increased depending on cycle (p < .001) and target (p < .001), with a slope of 0.016 per cycle.
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(p < .001), with a slope of 0.026 per cycle. Similarly,
holding success rate significantly increased depending on
cycle (p < .001) and target (p < .001), with a slope of
0.016 per cycle. These outcomes indicate not only that
practice positively influences users’ control ability, but also
that the target-specific difficulty needs to be taken into
account. In fact, it is reasonable to expect that different
target positions and orientations make the latter more or less
difficult to match. Additionally, the fact that the holding
success rate had a lower increase rate with respect to the
reaching success rate is in line with our expectations, as
holding the target revealed to be challenging even in B1,
when the user was asked to control the cursor position only.

To account for the inter-individual variability in the
effect of practice on success rates, subject-specific gener-
alized linear models (GLMs) with cycle and target as fixed
effects were fitted for each participant. P-values for the
effects of cycle and target on success rates for each par-
ticipant are reported in Tables 2 and 3, respectively. A

significant effect of cycle on reaching success rate was
found for five participants over 10, while the target effect
was significant for seven participants. The same results were
obtained for the holding success rate.

Holding time across blocks for each participant is re-
ported in Figure 11(a), while the corresponding mean value
and standard deviation are depicted in Figure 11(b). In this
case, mean holding time raised from 0.71 ± 0.50 s in B2 to
0.99 ± 0.44 s in B13. A linear mixed model (LMM) analysis
with target and cycle as fixed effects, and participant as
random effect was performed on the holding time to assess
whether the improvement was significant. Both cycle (p <
.001) and target (p < .001) had statistically significant effects
on holding time, with a slope of 0.011 s per cycle. As
expected from performance in B1 and results on the holding
success rate, on average it was difficult to maintain the
cursor on the target, and the improvement with blocks was
small compared to the one observed for the previous metrics.
By practicing the IKNS-based control during the experiment,
users learned to reach and hold the target for a small amount
of time, and these results suggest that it needs more practice
to further improve the holding time. Indeed, although the
holding time increase was found to be significant, on average
at the end of the experiment participants were still unable to
hold the target matched for 1 s, that is, the minimum time
required for accomplishing the holding task.

Subject-specific linear models (LMs) with cycle and
target as fixed effects were fitted for each participant. P-
values for the effects of cycle and target on holding time for
each participant are reported in Tables 2 and 3, respectively.
A significant effect of cycle on holding time was found for
five participants over 10, while the target effect was sig-
nificant for seven participants.

Mean angular error went from 10.28 ± 3.63 deg in B2 to
7.47 ± 3.43 deg in B13. Angular error on varying block for
each participant is reported in Figure 12(a), while the
corresponding mean value and standard deviation are
depicted in Figure 12(b). The LMM analysis with target
and cycle as fixed effects, and participant as random effect
revealed a statistically significant dependence of angular
error on cycle (p < .001) and target (p < .001), with a slope
of �0.14 deg per cycle. Considering that the angular error
was computed when the cursor position was within the
spatial tolerance, the significant decrease observed dem-
onstrates that, with respect to B2, at the end of B13 users
were able to place the cursor on the target with an ori-
entation closer to the one requested. In other words, this
indicates that users familiarized themselves with the
control, and were able to move and orient the cursor in a
more combined rather than sequential manner thanks to
practice.

A subject-specific LM analysis with cycle and target as
fixed effects was repeated for each participant, and both
cycle and target had significant effects on angular error for
seven participants over 10. P-values for the effects of cycle
and target on angular error for each participant are reported
in Tables 2 and 3, respectively.

Table 3. p-values for the effect of target on success rate (reaching
and holding), holding time, and angular error in Experiment 2.

p-value

Reaching
success rate

Holding
success rate

Holding
time

Angular
Error

User1 .001* .053 .018 .189
User2 .076 .364 .054 .474
User3 < .001* < .001* < .001* < .001*
User4 .001* .040* < .001* < .001*
User5 < .001* .001* < .001* < .001*
User6 .004* < .001* < .001* < .001*
User7 .006* .006* < .001* .015*
User8 .007* .009* .003* .002*
User9 .373 .167 .067 .095
User10 .093 .022* .065 .010*

The asterisk (*) indicates the statistical significance p < .05.

Table 2. p-values for the effect of cycle on success rate (reaching
and holding), holding time, and angular error in Experiment 2.

p-value

Reaching
success rate

Holding
success rate

Holding
time

Angular
Error

User1 .608 .702 .252 .972
User2 .809 .670 .757 .126
User3 < .001* < .001* < .001* < .001*
User4 .451 .507 .088 .048*
User5 .018* < .001* .008* .025*
User6 .276 .024* < .001* .002*
User7 < .001* < .001* < .001* < .001*
User8 < .001* < .001* < .001* < .001*
User9 < .001* .679 .287 < .001*
User10 .187 .434 .756 .680

The asterisk (*) indicates the statistical significance p < .05.
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A speculative discussion of the p-values obtained for the
subject-specific GLM analyses led to the following ob-
servations. The fact that the cycle effect was significant on
task performance for half of the participants may suggest
that 12 blocks were not always enough to have an impact on
performance. This holds for instance for User2, which
started the experiment with the lowest reaching success rate
among all the users (26 ± 13% in B2) and did not learn an
efficacious strategy for reaching the target before the ex-
periment ended (22 ± 22% in B13, i.e., again the worst
reaching success rate among the users). Anyway, the case of
User2 is not the only possible explanation. Participants that
obtained high performance since B1 were mostly able to
maintain such performance throughout the experiment, thus
no significant improvements were detected in their control
ability. For example, User10 outperformed the other
subjects in all the considered metrics, going from 81 ± 17%
in B2 to 93 ± 6% in B13 of reaching success rate, from 63 ±
6% in B2 to 70 ± 6% in B13 of holding success rate, from
1.97 ± 0.27 s in B2 to 1.63 ± 0.12 s in B13 of holding time,
and from 5.28 ± 4.23 deg in B2 to 4.72 ± 1.24 deg in B13 of
angular error. Similarly, User9 went from 41 ± 23% in B2 to
37 ± 6% in B13 of holding success rate, and from 1.07 ±
0.55 s in B2 to 1.08 ± 0.22 s in B13 of holding time. In other
words, since B2 performance of User9 was higher than the
mean holding success rate (37 ± 33%) and the mean holding
time (0.99 ± 0.44 s) across participants in B13.

Target effect on task performance was statistically sig-
nificant for most of the users (see Table 3). This result is
consistent with the intrinsic difficulty in matching targets
placed close to the boundaries of the arm workspace. Indeed,
even if the IKNS-based control signal range is constant in the
workspace, the range of motion of the arm changes with
respect to the arm posture. This causes changes in the control
signal resolution too; therefore, precisely controlling the
orientation of the cursor at points where the arm has reduced
mobility is more difficult than at points where the range of
motion is large. This is further confirmed by the mean target
reaching success rates across participants and blocks. On
average, Target1, Target2, and Target3, which were the

targets with the highest reaching success rates, were reached
74 ± 18%, 73 ± 12%, and 74 ± 18% of the times, respectively.
These targets were placed in the upper right region of the
workspace, thus in the region where the kinematic reach-
ability of the human arm workspace is maximized (Zacharias
et al., 2010). Hence it is plausible to assume that the human
arm’s capabilities are best in this region. On the contrary, the
targets with the lowest reaching success rates were Target4
(55 ± 21%), Target7 (56 ± 26%), and Target9 (57 ± 19%), the
matching of which required a greater arm extension that in
turn corresponded to a smaller range of motion.

In B14, mean reaching success rate and mean holding
success rate among participants were 98 ± 5% and 91 ±
12%, respectively, while the mean holding time was equal to
3.73 ± 1.05 s. Results for each participant are detailed in
Table 4.

A statistical analysis was conducted to assess whether
there was a statistically significant difference in performance
between the first and the last block. AWilcoxon signed-rank
test was used to understand whether there was a significant
difference between the average success rates. No significant
differences were found between B1 and B14 as regards
reaching (p > .05) and holding (p > .05) success rates. Holding
times were compared using a paired-samples t test. Differ-
ences between the holding times observed in B1 and in
B14 were normally distributed, as assessed by Shapiro–
Wilk’s test (p = .328). On average, participants held the cursor
on the target for a longer time in B14 (3.73 ± 1.05 s) as
opposed to B1 (2.86 ± 1.06 s), and the increment of 0.86 s was
found to be statistically significant (t (9) = 2.36, p = .042).
These results are consistent with our previous findings. The
experience made users gain confidence in the system, and the
statistically significant increment of the holding time is proof
of the acquired ability to control cursor position. The fact that
no statistically significant differences were found in the
success rates is reasonable as, on average, in B1 users were
already able to maintain the cursor located on the target for
more than 1 s. As a final remark, it is interesting to notice that
practicing with the IKNS (repeating blocks B2–B14) does not
affect the users’ natural control strategy.

Figure 11. Holding time in Experiment 2. Mean rates in each block (B2–13) for each participant is reported in (a), whereas mean value
and standard deviation across participants are in (b). Mean holding time raised from 0.71 ± 0.50 s in B2 to 0.99 ± 0.44 s in B13. A LMM
analysis with target and cycle as fixed effects, and participant as random effect, revealed that both cycle (p < .001) and target (p < .001)
had statistically significant effects on holding time, with a slope of 0.011 s per cycle.
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7.3.2. Movement strategies. Outcomes of the previous
analyses demonstrated large inter-individual variability in
task performance, hence we decided to further investigate
whether users adopted different movement strategies to
accomplish the task. In particular, we were interested in
understanding if users tended to firstly align the cursor with
the target orientation and then move the cursor in the target
position or, conversely, if they firstly minimized the distance
and then adjusted the orientation. Examples of strategies
adopted by the same user for different targets and by dif-
ferent users for the same target are reported in Figures 13
and 14, respectively. In this light, for each target presented
in B2–B13, we considered users’ specific timing of peak
linear velocity and peak angular velocity of the cursor.

A paired-samples t test was used to determine whether
there was a statistically significant mean time difference
between the peaks of linear and angular velocities for all
participants. The assumption of normality was not violated,
as assessed by Shapiro–Wilk’s test (p = .477). On average,
participants had the peak linear velocity 1.04 (95% CI,
0.786 to 1.302) s earlier with respect to the angular one t
(9) = 9.164, p < .001. A further confirmation was obtained
by conducting a Kruskal–Wallis test for each participant.
The test showed a statistically significant time difference
between peak linear velocity and peak angular velocity for
all the participants (p < .001 for all participants, except for
User5 whose statistical significance was p = .015). Results
are detailed in Table 5.

Finally, we investigated the existence of a correlation
between mean peaks time among users and progression in
the experiments (cycles and blocks). A Pearson correlation
test revealed that neither blocks nor cycles had a statistically
significant correlation with both the mean peak linear and
mean peak angular velocity times for any of the users. Such
results suggest that participants maintained unaltered their
strategy throughout the 12 blocks, that is, they adjusted the
cursor orientation only when the centre of the spheroids was
almost aligned.

7.3.3. Movement models. The throughput on block pro-
gression for each participant is reported in Figure 15(a). The

mean value across participants went from 0.81 ± 0.07 bit/s
in B2 to 0.94 ± 0.11 bit/s in B13. A Pearson correlation test
was run to assess the relationship between cycle and mean
throughput across participants. Results demonstrated a
statistically significant positive correlation between cycles
progression and mean throughput increase, r = 0.65, p <
.001. Considering that the spatial ID was constant across
blocks, a statistically significant increase of the information
rate denotes a decrease of the movement time to reach the
target. Hence, participants improved their speed-accuracy
tradeoff with practice.

To compute a reliable prediction model of the movement
time based on the Fitts’ Law, multiple conditions of

Figure 12. Angular error on varying block (B2–13) for each participant is reported in (a), whereas mean value and standard deviation
across participants are in (b). Mean angular error went from 10.28 ± 3.63 deg in B2 to 7.47 ± 3.43 deg in B13. A LMM analysis with
target and cycle as fixed effects, and a participant as random effect, showed a statistically significant dependence of angular error on cycle
(p < .001) and target (p < .001), with a slope of �0.14 deg per cycle.

Table 4. Task performance observed in the first (B1) and the last
(B14) blocks of Experiment 2.

Reaching
success rate

Holding
success rate

Holding time
(s)

B1 B14 B1 B14 B1 B14

User1 0.96 1.00 0.70 1.00 2.55 3.23
User2 0.96 0.85 0.81 0.59 2.55 1.93
User3 1.00 1.00 0.81 1.00 2.83 5.40
User4 0.89 1.00 0.37 0.89 1.31 2.58
User5 1.00 1.00 0.67 0.89 1.78 3.91
User6 1.00 0.93 1.00 0.93 4.34 5.17
User7 1.00 1.00 0.67 1.00 2.14 4.16
User8 1.00 1.00 0.74 1.00 2.74 3.60
User9 1.00 1.00 0.96 0.89 4.45 3.98
User10 1.00 1.00 0.96 0.96 3.96 3.39
Mean 0.98 0.98 0.77 0.91 2.86 3.73
STD 0.03 0.05 0.19 0.12 1.06 1.05

p-value > 0.05 > 0.05 0.042*

Reaching success rate, holding success rate, and holding time are reported
for each user, as well as mean values across participants. Success rates vary
between 0 and 1. The last row reports the p-values for theWilcoxon signed-
rank test (in the case of the success rates) and the paired-samples t-test (in
the case of the holding time) between block performances. The asterisk (*)
indicates the statistical significance p < .05. The bold items are to highlight
the differences with resepet to the lines above.
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accuracy required to complete the task should be considered
and tested within the experiment. Anyway, in our case this
would have prolonged the experiment too much, with
consequent poor reliability of the results because of mus-
cular and cognitive fatigue. Hence, we decided to carry out
the experiment with the most strict thresholds (i.e., asking
the subjects to perform the tasks with the highest indices of
difficulty), and then estimate a posteriori how the perfor-
mance would have varied if the thresholds had been larger.

Reaching performance was simulated by varying both
spatial and angular tolerances, doubling their value in seven
steps (i.e., from 3% to 6% of the maximum target distance
for tp, and from 4% to 8% of the maximum target orientation
for to). Similarly, holding performance was simulated by
varying the temporal accuracy from tt = 10 s (that is
equivalent to just target matching) to tt = 7 s, with a step of
0.5 s. In Figure 15(b), the corrected spatial ID as a function
of the scale factor applied to both spatial tolerances is re-
ported. For each participant, the corrected spatial ID was
computed as the mean value across the last three blocks
(B11–13). Conversely to what could be expected when the
thresholds are large, admitting a smaller task accuracy did
not reflect in a greater amount of transmitted information for
all the participants. Indeed, participants that had a high
reaching success rate with the original thresholds

maintained their performance when the tasks were simu-
lated with greater thresholds, thus for them the thresholds
increment entailed a reduction of the channel capacity. This
holds for instance for User3, User8, User9, and User10. On
the contrary, the thresholds increment was beneficial for
those who did not succeed the reaching tasks during the real
experiment (e.g., User4 and User5).

The different trends observed in the corrected spatial ID
suggest that there is no optimal a priori target size, but the target
size that maximizes the transmitted information varies across
participants depending on their control ability. This is further
confirmed by the total task ID computed as a function of both
spatial and temporal tolerances. A representative example is
reported in Figure 15(c), where the maximum corrected spatial
ID for the reaching task (i.e., at tt = 10 s) and the maximum
total task ID for the reaching and holding task are denoted in
the graph with a blue and a red dot, respectively. As it can be
noticed, the accuracy leading to the greater total task ID for the
reaching and holding task is not at the smallest spatial toler-
ance. This holds for the other participants too, as on average
they had their maximum total task ID when the spatial tol-
erances were multiplied by 1.23 ± 0.37. On the other hand, all
the participants had the higher transmitted information at the
smallest time tolerance (i.e., at tt = 9.5 s). This result is rea-
sonable considering the low performance that participants had

Figure 13. Movement strategies adopted by a representative participant (User9) to accomplish the task for Target2, Target6, and
Target9 are reported in (a), (b), and (c), respectively. For each block, we depict only data related to the first cycle in which both reaching
and holding task were accomplished. Line colour changes with block progression, from dark blue to cyan. For each target, the first graph
(from top to bottom) reports the cursor trajectory projected on the targets plane, the second graph shows the cursor-target distance
normalized between 0 and 1, while the last graph depicts the cursor-target angular error. Rest position and target position are
highlighted with a yellow circle and a red circle, respectively, whereas triangular marks indicate the first peak linear velocity and peak
angular velocity of the cursor for each block. The dashed lines represent the spatial tolerances.
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in the holding task. Indeed, the highest holding success rate
always occurs at the lowest temporal ID (that is, if the par-
ticipant can maintain the target matched for n seconds, then
they will be able to maintain it matched for less than n seconds
too). In our case, the highest holding success rates were low,
hence the increment of the temporal ID did not compensate for
the decrease of holding performance, and the corrected tem-
poral ID decreased when the temporal accuracy increased. In
Figure 15(d), we report the simulated temporal evolution of the
total task ID computed for each participant considering their
optimal thresholds. A Pearson test confirmed a statistically
significant positive correlation between cycles and total task
ID, r = 0.79, p < .001.

Finally, we interpolated the movement times to devise the
models of the participants’ motor behaviour. For the reaching
task, individual linear fit of MTR versus IDS resulted in an R2 =
0.18 ± 0.17, and the model was significant for seven participants
over 10 (p < .05, except for User4, User5, and User8). For the
reaching and holding task, individual linear fit of the movement
time for the task execution resulted in an R2 = 0.28 ± 0.16, and
the fit was significant for 10 participants over 10 (p < .001). In
particular, this last result confirmed the validity of the temporal
ID, as already observed in Gurgone et al. (2022). In Section

Kinematic versus Muscular Null Space, a more detailed dis-
cussion and comparison between the two approaches is reported.

8. Experiment 3 – wearable extra-finger

8.1. Experiment description

The third experiment was conducted to assess the effec-
tiveness of our paradigm for commanding a wearable SRL
in a real scenario. This experiment addresses the research
question “Is the IKNS-based control easy to learn for
operating a wearable extra-finger to accomplish common
activities of daily living?”

To this aim, leveraging the encouraging preliminary
results obtained in the preparatory experiment described in
Lisini Baldi et al. (2023), users were asked to perform a
repetitive pick-and-place task. They wore a robotic extra-
finger on the right forearm, mimicking a post-stroke
hemiparesis, and controlled the position of the opening/
closing mechanism with the same arm using the control
signal based on the IKNS. The wearable robotic finger
utilized for the experiments is a modified version of the one
presented in Prattichizzo et al. (2014). Specifically, we

Figure 14. Movement strategies to accomplish the task for Target5 adopted by User1, User3, and User10 are reported in (a), (b), and (c),
respectively. For each block, we depict only data related to the first cycle in which both reaching and holding task were accomplished.
Line colour changes with block progression, from dark blue to cyan. For each user, the first graph (from top to bottom) reports the cursor
trajectory projected on the targets plane, the second graph shows the cursor-target distance normalized between 0 and 1, while the last
graph depicts the cursor-target angular error. Rest position and target position are highlighted with a yellow circle and a red circle,
respectively, whereas triangular marks indicate the first peak linear velocity and peak angular velocity of the cursor for each block. The
dashed lines represent the spatial tolerances.
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implemented the mechanical design outlined in Salvietti
et al. (2017) and developed a novel firmware version to
enable the device control via an external input signal. Indeed,
the original version of the finger was controlled using two
buttons for opening and closing, while in the modified version
the closure is remotely controlled using a serial connection
(RS232 protocol, baudrate 115200 bps) with an external PC.
The extra-finger was activated in continuous manner, where
the maximum value of the IKNS-based control signal (i.e., 1)
corresponded to a fully closure of the finger, and the minimum
value (i.e., 0) to the maximum opening.

Participants were asked to pick and place a Rubik’s Cube
(from the YCB benchmark set (Calli et al., 2015), 64 g, 60 ×
60 × 60 mm) in four predefined points of the reachable arm
workspace. These points were the corners of a rectangular
area, as depicted in Figure 16. Participants were instructed
to pick the cube and place it from one point to the next
following the rectangle perimeter (clockwise) as many times
as possible in a time limit of 3 min. The starting point was on
the right lower angle of the arm workspace, and each target
position was considered successfully reached (thus, it was
counted in the final value) if the cube was correctly placed
on it and the subject had opened the extra-finger and raised
the hand by around 10 cm. Users repeated the experiment
seven times, with a pause of 15 min between each iteration.

Table 5. For each user we report the time instant of the linear and
angular velocity peaks together with the time interval between the
two instants.

Peak linear
velocity time
(s)

Peak angular
velocity time
(s)

Peak velocities
time difference
(s) p-value

User1 0.95 2.03 �1.08 < 0.001
User2 1.24 2.09 �0.85 < 0.001
User3 1.49 2.37 �0.88 < 0.001
User4 1.08 2.52 �1.43 < 0.001
User5 1.21 1.71 �0.50 0.015
User6 1.01 1.85 �0.84 < 0.001
User7 0.95 2.15 �1.20 < 0.001
User8 0.90 2.68 �1.78 < 0.001
User9 0.98 2.01 �1.04 < 0.001
User10 1.09 1.93 �0.84 < 0.001

Mean 1.09 2.13 �1.04 < 0.001*

In the last column the p-value obtained with a Kruskal–Wallis test for each
participant is reported. The test assessed a statistically significant time
difference between peak linear velocity and peak angular velocity for all the
participants (p < .001 for all participants, User5 has statistical significance
p < .05, p = .015). In addition, in the last row, we report the averaged values
among the users. In this case, a paired-samples t-test was used to determine
the statistically significant mean time difference between the peaks of linear
and angular velocities considering all participants as a whole. The bold
items are to highlight the differences with resepet to the lines above.

Figure 15. Individual control abilities. In (a), the throughput (computed as the ratio between IDS and MTR) as a function of the block
progression (B2–13) for each participant. The dashed black line indicates the mean value among users. The corrected spatial ID as a
function of the scale factor applied to both spatial tolerances is reported in (b). For each participant, the corrected spatial ID was
computed as the mean value across the last three blocks (B11–13). In (c), a representative example (User8, B13) of the total task ID
computed as a function of both spatial and temporal tolerances. The maximum total task ID for the reaching and holding task are
denoted in the graph with a blue and a red dot, respectively. The simulated temporal evolution of the total task ID computed for each
participant considering their optimal thresholds is reported in (d). The dashed black line indicates the mean value among users.
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8.2. Metrics of interest

The number of successfully reached target positions was
considered as a performance metric and was used to esti-
mate the learning curve describing the average improve-
ment in performance. Since we designed the experiment as a
success-based task, we exploited a sigmoid function for
modelling and fitting data (Leibowitz et al., 2010). The latter
was defined as

bf ðθ, xÞ ¼ θ4
θ3 þ eθ1xþθ2

þ xmin (3)

where x is the trial number, θ ¼ fθigi¼1…4 is the curve shape
parameters vector, and xmin is the minimum performance
observed in the dataset.

8.3. Results and discussion

Results for all participants are shown in Figure 17(a). The
relationship between the mean number of successes among the
user (reported as a dashed black line in Figure 17(a)) and the
trial progression was modelled with the sigmoid described in
(3). Figure 17(b) shows the obtained learning curve (R2 = 0.98).

Results show that participants rapidly learned how to use
the system, and gained confidence in picking and releasing
the cube. The majority of the users (8 over 10) reached a
speed of 30 motions in 3 minutes. On average, after seven
trials (a total of 21 min of experiments) participants reached
the plateau, meaning that asking them to perform further
tasks would have led to limited improvement since their
learning capacity was reduced.

Even if the aforementioned results may appear coarser
compared to the analysis carried out in Experiment 2, here
our goal was to provide an initial assessment of the prac-
ticality of the approach, showing that it can be used
in situations of daily living. The slope of the learning curve
demonstrates that with few trials users are able to take
advantage of the IKNS-based control for accomplishing

dual tasks with a wearable robotic extra-finger. On average,
in no more than six trials (18 min of usage) the mean number
of cube movements increased by about 80%.

9. Experiment 4 – assistive robotic arm

9.1. Experiment description

The fourth experiment aimed at answering the last research
question, that is, “How does user performance in accom-
plishing common activities of daily living that involve si-
multaneous tasks differ when using the IKNS-based control
compared to an EKNS-based control?”

Participants were instructed to use a grounded super-
numerary robotic arm (Kinova Mico2) to pour a glass of
water. Similarly to Experiment 3, the participants were
given two tasks to complete simultaneously: holding the
glass under the bottle, and precisely controlling the robot to
pour exactly 30 g of water (refer to Figure 18). A line was
marked on the glass to indicate the desired water quantity.

At the onset of the experiment, the SRL had already
grasped the bottle. Each participant was then asked to control
the velocity of the robotic arm’s last joint to pour the water,
which ranged between �30 deg/s and 30 deg/s. In order to
enhance the realism of the task, four distinct positions within
the reachable peripersonal space were considered. Each
participant made three attempts for each end-effector posi-
tion, resulting in a total of 12 trials per subject, proposed in a
pseudo-random order. As visible in Figure 18, the hand
starting positionwas the same for all the trials. After each trial
the quantity of poured water was evaluated using a scale.

Subjects were asked to repeat the task under two experi-
mental conditions, that is controlling the velocity of the joint
using once the IKNS-based control signal extracted from the
same arm holding the glass, and once using the EKNS-based
control signal extracted from the dorsiflexion of their right foot.
The latter was reconstructed online using four retro-reflective
markers attached to the subject’s right foot, and the software
Vicon Tracker 3.0 (Vicon Motion Systems Ltd, UK). Among
the possible joint motions in the Extrinsic Kinematic Null
Space, we have opted to derive the control signal from the
dorsiflexion of the joint of the ankle due to the familiarity
individuals have with this specific movement, often used for
driving the car. For enabling the EKNS condition, the cali-
bration phase of this experiment was enlarged with a further
step in which subjects were asked to dorsiflex their right foot
10 times. For each motion, the maximum angle between the
ground and the sole of the foot was recorded, and the average of
these values was used as a normalization factor. Thus, in ac-
cordance with (2), the control signal f, associated to the foot
motion is calculated as

f ¼
θbθ, if θ ≤bθ
1, if θ >bθ

8><>: (4)

Figure 16. Experiment 3 setup. Participants were asked to pick
Rubik’s Cube and place it from one point to the next one
(clockwise) as many times as possible in a time limit of 3 min.
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being θ the actual angle between the ground and the foot
sole, and bθ the average maximum value. The resulting f was
mapped from �30 deg/s to 30 deg/s. The IKNS-based
control signal was mapped in the same joint velocity
range. In Figure 19, we report the control signals generated
using the two approaches and the corresponding end-
effector joint angle in two representative trials.

9.2. Metrics of interest

The deviation from the desired water quantity ϵ and the
completion time τ were used as evaluation metrics.

There were 60 g of water in the bottle, meaning that the
maximum possible absolute error in pouring the water was
30 g. The completion time of the trial was measured from the
moment the glass was lifted from the starting position until it
was placed back on the desk, returning in the starting position.

9.3. Results and discussion

Results under the two experimental conditions were sta-
tistically analyzed. A paired-samples t test was conducted to
determine whether there was a statistically significant mean
difference between the error in pouring the water when
participants exploited the IKNS approach compared to the
EKNS one. Data are reported as mean ± standard deviation.
No outliers were detected. The assumption of normality was
initially violated (data were moderately positively skewed
to normality), thus we applied a ‘square root’ transformation
(Cohen et al., 2013). Resulting data were normally dis-
tributed, as assessed by Shapiro–Wilk’s test (p = .10). The
t test revealed that the mean difference of 1.51 g between
using the IKNS-based control signal (13.64 ± 7.72 g) as
opposed to using the EKNS-based control signal (12.03 ±
5.18 g) was not statistically significant (95% CI, �1.37 to
4.40) g, t (95) = 0.273, p = .785. Average errors for each user
and for each end-effector position are reported in Tables 6
and 7 for the two experimental conditions.

Similarly, a paired-samples t test was used to determine
whether the mean difference in completion time was sta-
tistically significant. Two outliers were detected and

removed from the analysis. The assumption of normality
was not violated, as assessed by Shapiro–Wilk’s test (p =
.777). Participants accomplished the task in minor time
when commanding the robot with the EKNS approach
(14.33 ± 5.12 s) as opposed to the control based on the IKNS
(17.26 ± 6.28 s). The test revealed a statistically significant
reduction of 2.91 (95% CI, 1.46 to 4.36) s, t (93) = 3.99, p <
.001. Average completion times for each user and for each
end-effector position are reported in Tables 8 and 9 for the
two experimental conditions.

The obtained results were in line with our expecta-
tions. Statistical analysis demonstrated that the differ-
ences in water pouring accuracy between the IKNS and
EKNS methods were not statistically significant. How-
ever, it is worth noting that using the IKNS to control the
SRL required more time to complete the pouring task.
Taking into consideration the results obtained in Ex-
periment 2 and Experiment 3, this discrepancy in pouring
time can be consistently attributed to the participants’
unfamiliarity with the IKNS method. In contrast, they
were well accustomed to the EKNS method, which
mimics the motion of a car’s accelerator pedal. This
familiarity with the EKNS method likely allowed par-
ticipants to perform the pouring task more efficiently,
leading to shorter completion times compared to the
relatively unfamiliar IKNS method.

10. Kinematic versus muscular null space

In terms of task performance and motor skill learning, we
can compare results of Experiment 2 with those obtained
using the intrinsic muscular null space (Gurgone et al., 2022).
Despite a few differences in the experimental protocol (e.g.,
target arranged in a vertical plane in the current study and in a
horizontal plane in Gurgone et al. (2022)), in both cases
participants were asked to simultaneously adjust the dis-
placement and the orientation of an elliptical cursor to match
the position and orientation of several elliptical targets.

Reaching success rate in the first null space control block
was 50 ± 35% (mean ± standard deviation across partici-
pants, N = 10) for IKNS and 72 ± 26% for IMNS (N = 8).

Figure 17. Results of Experiment 3. In (a), the number of successfully reached target positions as a function of the trial progression is
reported for each participant. The thicker dashed black line shows the mean among all the subjects. In (b), the mean number of
successes among all the subjects is reported in solid blue, while the estimated learning curve is depicted with a dashed blue line.
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Figure 18. Experiment 4 setup. Participants were asked to pour 30 g of water into a glass using a robotic arm. Four different positions in
the reachable perispersonal space, detailed in (a), (b), (c) and (d), were proposed. The hand starting position was fixed across the trials.

Figure 19. Representative trials of Experiment 4. Upper panel, IKNS-based control signal extracted from the movement of the same arm
holding the glass. Arm joint values (a) recorded with Vicon Nexus are used to extract the control signal (b), which is then used to
control the velocity of the robotic arm’s last joint. In (c), the resulting joint value. Lower panel, EKNS-based control signal extracted
from the dorsiflexion of the right foot. Ankle value (d) recorded with Vicon Tracker is used to compute the control signal (e) as in (3),
which is then used to control the velocity of the robotic arm’s last joint. In (f), the resulting joint value. The green background highlights
the phases in which the water is poured into the glass.
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Performance increased in both cases, with a reaching
success rate of 66 ± 33% for IKNS and 93 ± 11% for
IMNS. Similarly, holding success rate in the final block was
37 ± 33% for IKNS and 43 ± 31% for IMNS. Even though
performances were comparable, IMNS outperformed IKNS

in all the cases in terms of absolute values. A possible
explanation for this difference is that the spatial IDs in the
case of IKNS were higher than the ones proposed in the case
of IMNS. Another hypothesis supported by a kinematic
analysis of the human arm suggests that as the arm

Table 6. Error in pouring the water in Experiment 4 using the IKNS approach.

Pos 1 Error (g) Pos 2 Error (g) Pos 3 Error (g) Pos 4 Error (g) Mean ± STD Error (g)

User1 4.92 13.11 4.38 5.86 7.07 ± 4.07
User2 5.50 2.30 8.90 6.49 5.80 ± 2.74
User3 19.40 22.10 11.91 18.10 17.88 ± 4.31
User4 3.85 13.79 5.19 22.36 11.30 ± 8.59
User5 27.15 19.26 3.92 25.69 19.01 ± 10.63
User6 18.85 24.02 3.66 17.63 16.04 ± 8.70
User7 16.87 12.38 7.75 21.37 14.59 ± 5.86
User8 18.61 13.86 11.54 25.79 17.45 ± 6.29

Mean ± STD 14.39 ± 8.00 15.10 ± 6.37 7.16 ± 3.15 17.91 ± 7.33 13.64 ± 7.72

For each user, we report the average of three trials per each end-effector position. The last column reports the average of each user among all the positions,
while in the last row, means and standard deviations among the user for each position are detailed. The bold items are to highlight the differences with
resepet to the lines above.

Table 7. Error in pouring the water in Experiment 4 using the EKNS approach.

Pos 1 Error (g) Pos 2 Error (g) Pos 3 Error (g) Pos 4 Error (g) Mean ± STD Error (g)

User1 4.70 11.76 21.65 24.92 15.76 ± 9.25
User2 7.89 15.13 13.98 12.77 12.45 ± 3.19
User3 12.95 19.20 13.26 6.90 13.08 ± 5.02
User4 15.77 11.10 16.19 8.69 12.94 ± 3.65
User5 5.36 14.42 5.35 6.19 7.83 ± 4.41
User6 8.15 20.67 11.73 17.20 14.44 ± 5.58
User7 3.80 11.10 11.68 6.61 8.30 ± 3.76
User8 9.00 12.50 14.54 9.70 11.44 ± 2.56

Mean ± STD 8.45 ± 3.87 14.49 ± 3.45 13.55 ± 4.30 11.62 ± 6.11 12.03 ± 5.18

For each user, we report the average of three trials per each end-effector position. The last column reports the average of each user among all the positions,
while in the last row, means and standard deviations among the user for each position are detailed. The bold items are to highlight the differences with
resepet to the lines above.

Table 8. Time needed by the user to accomplish the task in Experiment 4 using the IKNS approach.

Pos 1 Time (s) Pos 2 Time (s) Pos 3 Time (s) Pos 4 Time (s) Mean ± STD Time (s)

User1 22.62 17.43 16.02 15.38 17.86 ± 3.29
User2 19.11 16.75 12.08 14.03 15.49 ± 3.08
User3 25.15 18.70 30.72 20.17 23.68 ± 5.44
User4 17.72 16.13 11.12 13.33 14.57 ± 2.93
User5 14.29 22.19 18.23 18.92 18.41 ± 3.24
User6 13.34 19.09 16.28 18.40 16.78 ± 2.59
User7 16.62 16.80 19.36 15.18 16.99 ± 1.74
User8 10.38 14.96 15.64 16.25 14.31 ± 2.67

Mean ± STD 17.40 ± 4.56 17.76 ± 2.08 17.43 ± 5.66 16.46 ± 2.29 17.26 ± 4.04

For each user, we report the average of three trials per each end-effector position. The last column reports the average of each user among all the positions,
while in the last row, means and standard deviations among the user for each position are detailed. The bold items are to highlight the differences with
resepet to the lines above.
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approaches the singularity configuration, the range of
motion within the IKNS diminishes, making it more
challenging to control the orientation of the cursor.

When comparing the two approaches, it is crucial to take
into account both their potential for exploitation and any
practical limitations they may have in real-life applica-
tions. On the one hand, when utilizing the kinematic null
space, users have to pay attention to their surrounding,
avoiding potential obstacles. On the other hand, using the
muscular kernel limits the stiffness control of the in-
volved link. For example, if the user seeks to control an
additional degree of freedom by co-contracting forearm
muscles, this might interfere with a precise adjustment of
arm impedance. Considering the number of available null
space dimensions in the upper limb, it is important to note
that despite the arm having seven kinematic degrees of
freedom controlled by 18 muscles (Halim, 2008), not all
of these dimensions are effectively exploitable for
muscular control.

The advantages and disadvantages preliminarily dis-
cussed in this section are instrumental for a more com-
prehensive and detailed comparison, which will be the focus
of future work.

11. Limitations

In this section we summarize the main limitations of the
IKNS-based approach as identified by the authors during the
experiments. Additionally, we will propose potential miti-
gations to address these limitations.

The first limitation is related to the need of a MOCAP
system. Indeed, all the experiments were performed in a
room equipped with a Vicon system, and retro-reflective
markers were attached to the subject to record arm joint
angle values. Despite the limited suitability of a marker-
based system for real-world applications, we decided to
utilize it due to the paramount importance of high precision
and reliability during this validation phase. Once the system
attains validation, body tracking can seamlessly transition to

more versatile (and potentially wearable) systems which
rely on inertial measurements (Lisini Baldi et al., 2019;
Mihcin, 2022; Mihcin et al., 2021) or on cameras (Baak
et al., 2013; Colombel et al., 2021; Yang et al., 2022).

Another potential limitation of the system could be the
suboptimal selection of movements made by users during
the initial phase. Users may initially prefer certain motions
that could later prove to be unsuitable due to fatigue or other
factors. As a result, users would need to reinitialize the
system, resulting in a loss of time and inconvenience. To
address this, an algorithm can be developed to automatically
learn and identify all the motions within the Intrinsic Ki-
nematic Null Space considering also individual users’
preferences and fatigue levels. By continuously analyzing
user movements and collecting data, the algorithm could
adapt and refine the motion selection process, ensuring that
the chosen movements are more suitable for the user’s needs
and minimizing the need for system reinitialization. Im-
plementing such an algorithm would not only enhance the
efficiency of the system but also provide a seamless and
personalized experience for the users, reducing the potential
frustration associated with initial motion selection.

12. Conclusions and future work

This study presented a novel approach for controlling extra
degrees of freedom of supernumerary robotic limbs ex-
ploiting the redundancy of the upper limbs of the human
body. This kind of control takes advantage of movements in
the Intrinsic Kinematic Null Space for enabling the user to
easily and comfortably control robotic devices to accom-
plish dual tasks. A paradigmatic example of the IKNS
potential is the performance of augmented manipulation
tasks that require the involvement of both natural and ar-
tificial limbs. In such case, the human end-effector is rep-
resented by the hand, and the motion of the joints of the
shoulder, the elbow, and the wrist that does not generate
velocities of the hand can be exploited to compute the signal
controlling the artificial limb.

Table 9. Time needed by the user to accomplish the task in Experiment 4 using the EKNS approach.

Pos 1 Time (s) Pos 2 Time (s) Pos 3 Time (s) Pos 4 Time (s) Mean ± STD Time (s)

User1 20.67 12.21 11.83 14.43 14.79 ± 4.09
User2 18.10 12.84 13.73 18.85 15.88 ± 3.03
User3 18.03 19.32 12.33 16.04 16.43 ± 3.05
User4 13.31 8.36 8.76 13.45 10.97 ± 2.79
User5 12.77 12.32 11.36 16.92 13.34 ± 2.46
User6 11.17 11.03 9.39 10.48 10.52 ± 0.81
User7 18.80 18.54 14.77 15.03 16.78 ± 2.18
User8 14.79 13.29 19.00 16.65 15.93 ± 2.46

Mean ± STD 15.96 ± 3.18 13.49 ± 3.45 12.65 ± 3.04 15.23 ± 2.37 14.33 ± 3.37

For each user, we report the average of three trials per each end-effector position. The last column reports the average of each user among all the positions,
while in the last row, means and standard deviations among the user for each position are detailed. The bold items are to highlight the differences with
resepet to the lines above.
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The control of a degree of freedom while simultaneously
performing a primary task with the natural limbs requires
signals that do not interfere with hand motion. As a first step
towards the ambitious goal of augmenting human motor
capabilities, we tested whether simultaneous control of
natural and extra DoFs through the Intrinsic Kinematic Null
Space is a viable solution. To this end, we developed a
control strategy that exploits motions within the kinematic
null space, and we tested its performance both in virtual and
real environments.

The experimental campaign was based on four experi-
ments. With the first experiment we proved that it is possible
to use the IKNS to control an additional degree of freedom
for executing dual tasks. Indeed, asking users to perform a
secondary task controlled through the IKNS-based signal
did not affect the performance of the primary task. In the
second experiment, we evaluated users’ control ability by
quantifying whether and how fast a control based on the
Intrinsic Kinematic Null Space improves with practice. An
information theory-based approach was adopted to model
the participant motor behaviour and generalize the as-
sessment of the control ability beyond the performance
achieved with the specific parameters of the experiment.
The third experiment was conducted to assess the effec-
tiveness and practicality of our control paradigm in con-
trolling a wearable supernumerary robotic finger in a real
scenario, showing that it can be used in situations of daily
living. Finally, in the fourth experiment, a comparison was
made between approaches utilizing Intrinsic and Extrinsic
Kinematic Null Spaces for controlling a grounded super-
numerary robotic arm. The results of the experiment re-
vealed that there was no statistically significant difference in
task accuracy between the two approaches.

Results here presented pave the way towards a new
research field, that is, human sensorimotor augmentation.
Future research directions include expanding the IKNS-
based control strategy to control a larger number of degrees
of freedom, as well as developing novel methods to perform
the IKNS identification by means of wearable interfaces
able to capture body motions. Moreover, a novel experi-
mental campaign will be conducted for comparing IKNS,
IMNS, and a hybrid approach mixing the two schemes,
possibly involving the control of multiple-DoF SRLs. Such
a comparison requires to conduct multiple experiments
sharing the same experimental protocol and the same setup
setting.

In conclusion, we demonstrated the feasibility of a
novel approach to control an extra DoF exploiting the
kinematic redundancy of the kinematic chain of the limb
directly involved in a task being performed. Such an
approach can be applied to control more sophisticated
assistive or augmentative robotic devices (as extra limbs/
arm wearable or not) in everyday life situations, for both
healthy and impaired people. The proposed method may
be used, for instance, by impaired patients to compensate
for their disability using the same limb (the healthy one)
both to accomplish a task and for controlling a robot in a

cooperative way. In addition, our user-centred approach
mitigates the risk of long-term injury and reduces fatigue
thanks to the fact that the user can perform the most
comfortable motions within the null space to control the
extra-DoF.

In future studies, we will evaluate the physical and
cognitive load needed for using such approach that might
me too high for a frail person. A complete analysis will
evaluate multiple body locations and a different number of
degrees of freedom to be commanded, searching for the best
compromise between cognitive load, physical effort, and
controllable degrees of freedom.
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